
iPCL
System Description and Programming Manual

Typ3 osa / PNC

101
Edition

Antriebs- und Steuerungstechnik

Typ3 osa / PNC

iPCL
System Description and Programming Manual
1070 073 875-101 (02.04) GB

E 2002

by Bosch Rexroth AG, Erbach / Germany
All rights reserved, including applications for protective rights.

Reproduction or distribution by any means subject to our prior written permission.

Discretionary charge 12.� EUR

Software release: V7.x

Contents V

1070 073 875-101 (02.04) GB

Contents
Page

1 Safety Instructions 1�1 .
1.1 Intended use 1�1 .
1.2 Qualified personnel 1�2 .
1.3 Safety markings on products 1�3 .
1.4 Safety instructions in this manual 1�4 .
1.5 Safety instructions for the described product 1�5
1.6 Documentation, software release and trademarks 1�7

2 System Overview 2�1 .
2.1 Functionality 2�1 .
2.2 Hardware platforms 2�2 .
2.3 iPCL extensions 2�3 .
2.4 Data backup 2�4 .

3 Configuration 3�1 .
3.1 Connecting to the system 3�1 .
3.2 Startup of the iPCL 3�2 .
3.2.1 Initialization of the iPCL 3�3 .
3.2.2 Startup diagram 3�4 .
3.2.3 Startup conditions 3�7 .
3.3 Data backup and residual characteristics of the iPCL 3�9
3.3.1 Data backup depending on hardware platform 3�9
3.3.2 Defining residual areas in the OM2 3�12 .
3.3.3 Residual characteristics depending on hardware platform 3�14
3.3.4 Residual operation 3�15 .
3.3.5 Non-residual operation 3�15 .
3.3.6 Buffer failure, data backup fault 3�16 .

4 Peripheral Operation 4�1 .
4.1 Data exchange machine <��> PLC 4�1 .
4.2 PROFIBUS-DP 4�2 .

5 Programming Basics 5�1 .
5.1 Programming 5�1 .
5.2 Program Structure 5�2 .
5.3 Module Types 5�2 .
5.3.1 Organization modules (OM) 5�2 .
5.3.2 Program modules 5�3 .
5.3.3 Data modules 5�3 .
5.3.4 APS modules 5�4 .
5.4 Program Processing 5�5 .
5.5 Time Monitoring 5�6 .
5.6 I/O state 5�6 .
5.6.1 Fixing inputs, outputs & markers 5�6 .
5.6.2 Updating timers 5�7 .
5.6.3 Cyclical processing 5�7 .
5.6.4 Application program structure 5�7 .
5.7 Initialisation table OM2 5�8 .
5.7.1 Printout of the OM2iPCL 5�9 .
5.8 Module reference list 5�14 .

ContentsVI

1070 073 875-101 (02.04) GB

5.9 Module existence 5�15 .
5.10 Module size 5�15 .
5.11 Module start address 5�16 .
5.12 Module header 5�16 .
5.13 OM9 error module 5�17 .
5.14 Fixation 5�17 .
5.15 Parameterized Modules 5�18 .
5.16 Time-controlled program processing 5�19 .
5.17 Application stack 5�20 .

6 iPCL addressing 6�1 .
6.1 Operand & module identifiers, module list 6�1
6.2 Assignments in the special marker area 6�2 .
6.3 System area assignment 6�4 .
6.4 Periphery status 6�6 .
6.5 Data formats 6�7 .
6.6 Register structure 6�11 .
6.7 Representation of constants 6�12 .
6.8 Program module calls 6�12 .
6.9 Jump instructions 6�12 .
6.10 Bit- and module addresses 6�13 .
6.11 Byte addresses 6�13 .
6.12 Addressing modes 6�14 .
6.12.1 Absolute addressable operands 6�14 .
6.12.2 Direct addressing of all absolute addressable operands 6�14
6.12.3 Register-to-register addressing 6�14 .
6.12.4 Register indirect addressing 6�15 .
6.12.5 iPCL indirect addressing 6�16 .
6.13 Parameter transfer 6�18 .
6.14 Addressing limits 6�19 .

7 Instruction set 7�1 .
7.1 Structure of controller instructions 7�1 .
7.2 Flags 7�1 .
7.3 Key to abbreviations 7�2 .
7.4 Bit instructions 7�3 .
7.5 Timer programming 7�4 .
7.5.1 Timer instructions 7�5 .
7.5.2 Time format 7�6 .
7.5.3 Timer diagrams 7�7 .
7.6 Counter instructions 7�8 .
7.7 Digital links 7�9 .
7.8 SWAP instructions 7�9 .
7.9 Compare instruction 7�10 .
7.10 Load instructions 7�12 .
7.11 Tranfer instructions 7�13 .
7.12 Convert instructions 7�14 .
7.13 Increment & Decrement instructions 7�15 .
7.14 Stack instructions 7�15 .
7.15 No operation instructions & CARRY manipulations 7�15
7.16 Shift instructions 7�16 .
7.17 Rotate instructions 7�17 .
7.18 Fixed point arithmetic 7�18 .
7.18.1 Add instructions 7�18 .
7.18.2 Substract instructions 7�20 .
7.18.3 Multiply instructions 7�22 .
7.18.4 Divide instructions 7�23 .

Contents VII

1070 073 875-101 (02.04) GB

7.19 Floating point arithmetic 7�24 .
7.19.1 Loadfloating point values 7�25 .
7.19.2 TRANSFERfloating point values 7�26 .
7.19.3 CONVERT number formats (floating point <-> integer) 7�26
7.19.4 Convert data formats (REAL <--> LREAL) 7�26
7.19.5 Removing decimal positions 7�27 .
7.19.6 Comparefloating point values 7�27 .
7.19.7 Calculating with floating point values 7�28 .
7.19.8 Forming absolute value 7�29 .
7.19.9 Extracting square root 7�29 .
7.19.10 Exponentiation 7�29 .
7.19.11 Logarithmic functions 7�30 .
7.19.12 Trigonometric functions floating point 7�30 .
7.20 Parameter assignments 7�31 .
7.21 Local symbol names & auxiliary markers for program tracking 7�31 .
7.22 System variable 7�31 .
7.23 Jump instructions 7�32 .
7.24 Module calls 7�34 .
7.25 End of module instruction 7�36 .
7.26 FIFO instructions 7�37 .
7.27 Block commands 7�38 .
7.28 Interrupt instructions for time-controlled processing 7�41
7.29 Program stop and program end 7�41 .
7.30 Backing up and loading residual areas 7�42 .

8 Processing Times 8�1 .

9 Sample Programs 9�1 .
9.1 Indirect addressing 9�1 .
9.2 Compare instruction examples 9�2 .
9.3 FIFO instruction examples 9�3 .

A Appendix A�1 .
A.1 Abbreviations A�1 .
A.2 Index A�2 .

ContentsVIII

1070 073 875-101 (02.04) GB

Notes:

Safety Instructions 1�1

1070 073 875-101 (02.04) GB

1 Safety Instructions

Before you start working with the iPCL , we recommend that you thoroughly
familiarize yourself with the contents of this manual. Keep this manual in a
place where it is always accessible to all users.

1.1 Intended use

This manual contains information required for the proper use of this product.
However, for reasons of structural clarity, the manual cannot provide ex-
haustive details regarding all available combinations of functional options.
Similarly, it is feasible to consider every conceivable integration or operating
scenario within the confines of this manual.

The Typ3 osa and PNC controls serve as
D activate feed drives, spindles and auxiliary axes of a machine tool via

SERCOS interface for the purpose of guiding a processing tool along a
programmed path to process a workpiece (CNC). Furthermore, a PLC is
required with appropriate I/O components which � in communication with
the actual CNC � controls the machine processing cycles holistically and
acts as a technical safety monitor.

D program contours and the processing technology (path feedrate, spindle
speed, tool change) of a workpiece.

Any other application is deemed improper use!

The products described hereunder
D have been developed, manufactured, tested and documented in com-

pliance with the safety standards. These products pose no danger to per-
sons or property if they are used in accordance with the handling
stipulations and safety notes prescribed for their configuration, mount-
ing, and proper operation.

D comply with the requirements of
D the EMC Directives (89/336/EEC, 93/68/EEC and 93/44/EEC)
D the Low-Voltage Directive (73/23/EEC)
D the harmonized standards EN 50081-2 and EN 50082-2

D are designed for operation in industrial environments, i.e.
D no direct connection to public low-voltage power supply,
D connection to the medium- or high-voltage system via a transformer.
In residential environments, in trade and commerce as well as small en-
terprises class A equipment may only be used if the following warning is
attached:

. This is a Class A device. In a residential area, this device may cause
radio interference. In such case, the user may be required to introduce
suitable countermeasures, and to bear the cost of the same.

The faultless, safe functioning of the product requires proper transport, stor-
age, erection and installation as well as careful operation.

Safety Instructions1�2

1070 073 875-101 (02.04) GB

1.2 Qualified personnel

The requirements as to qualified personnel depend on the qualification pro-
files described by ZVEI (central association of the electrical industry) and
VDMA (association of German machine and plant builders) in:
Weiterbildung in der Automatisierungstechnik
edited by: ZVEI and VDMA
MaschinenbauVerlag
Postfach 71 08 64
D-60498 Frankfurt.

This manual is intended for project engineers and NC specialists, who are
familiar with programmable logic controllers (PLC). A special knowledge of
how to configure and commission electrical equipment is also required

Programming, start and operation as well as the modification of program
parameters is reserved to properly trained personnel! This personnel must
be able to judge potential hazards arising from programming, program
changes and in general from the mechanical, electrical, or electronic equip-
ment.

Interventions in the hardware and software of our products, unless de-
scribed otherwise in this manual, are reserved to our specialized personnel.

Tampering with the hardware or software, ignoring warning signs attached to
the components, or non-compliance with the warning notes given in this
manual may result in serious bodily injury or material damage.

Only electrotechnicians as recognized under IEV 826-09-01 (modified) who
are familiar with the contents of this manual may install and service the prod-
ucts described.

Such personnel are
D those who, being well trained and experienced in their field and familiar

with the relevant norms, are able to analyze the jobs being carried out
and recognize any hazards which may have arisen.

D those who have acquired the same amount of expert knowledge through
years of experience that would normally be acquired through formal
technical training.

With regard to the foregoing, please note our comprehensive range of trai-
ning courses. For current information, the web shop and online booking of
seminars please visit our website http://www.bosch.de/at/didactic. Our trai-
ning center will be pleased to provide you with further information, tele-
phone: (+49) (0 60 62) 78�258.

Safety Instructions 1�3

1070 073 875-101 (02.04) GB

1.3 Safety markings on products

Warning of dangerous electrical voltage!

DANGER! Corrosive battery acid!

Electrostatically sensitive components!

Hazardous light emissions
(optical fibre cable emitters)!

Disconnect mains power before opening!

Lug for connecting PE conductor only!

Connection of shield conductor only

Safety Instructions1�4

1070 073 875-101 (02.04) GB

1.4 Safety instructions in this manual

DANGEROUS ELECTRICAL VOLTAGE
This symbol is used to warn of a dangerous electrical voltage. The fail-
ure to observe the instructions in this manual in whole or in part may result
in personal injury.

DANGER
This symbol is used wherever insufficient or lacking compliance with in-
structions may result in personal injury.

CAUTION
This symbol is used wherever insufficient or lacking compliance with in-
structions may result in damage to equipment or data files.

. This symbol is used to draw the user�s attention to special circumstances.

L This symbol is used if user activities are required.

Safety Instructions 1�5

1070 073 875-101 (02.04) GB

1.5 Safety instructions for the described product

DANGER
Danger of life through inadequate EMERGENCY-STOP devices!
EMERGENCY-STOP devices must be active and within reach in all
system modes. Releasing an EMERGENCY-STOP device must not
result in an uncontrolled restart of the system!
First check the EMERGENCY-STOP circuit, then switch the system
on!

DANGER
Risk of personal injury and equipment damage!
Always subject new programmes to initial tests while inhibiting axis
movements. For this purpose, as a function of the AUTOMATIC
mode, the controller provides the option to block axis movements or
auxiliary functions by means of special softkey commands.

DANGER
Incorrect or undesired control unit response!
Bosch accepts no liability for damage resulting from the execution
of an NC program, an individual NC block or the manual movement
of axes!
Furthermore, Bosch accepts no liability for consequential damage
which could have been avoided by programming the PLC appropri-
ately!

DANGER
Retrofits or modifications may adversely affect the safety of the
products described!
The consequences may include severe injury, damage to equipment,
or environmental hazards. Possible retrofits or modifications to the
system using third-party equipment therefore have to be approved
by Bosch.

DANGEROUS ELECTRICAL VOLTAGE
Unless described otherwise, maintenance works must be performed
on inactive systems! The system must be protected against unau-
thorized or accidental reclosing.

Measuring or test activities on the live system are reserved to quali-
fied electrical personnel!

Safety Instructions1�6

1070 073 875-101 (02.04) GB

DANGER
Tool or axis movements!
Feed and spindle motors generate very powerful mechanical forces
and can accelerate very quickly due to their high dynamics.
D Always stay outside the danger area of an active machine tool!
D Never deactivate safety-relevant functions!
D Report any malfunction of the unit to your servicing and repairs

department immediately!

CAUTION
Use only spare parts approved by Bosch!

CAUTION
Danger to the module!
All ESD protection measures must be observed when using the
module! Prevent electrostatic discharges!

The following protective measures must be observed for modules and com-
ponents sensitive to electrostatic discharge (ESD)!
D Personnel responsible for storage, transport, and handling must have

training in ESD protection.
D ESD-sensitive components must be stored and transported in the pre-

scribed protective packaging.
D ESD-sensitive components may only be handled at special ESD-work-

places.
D Personnel, working surfaces, as well as all equipment and tools which

may come into contact with ESD-sensitive components must have the
same potential (e.g. by grounding).

D Wear an approved grounding bracelet. The grounding bracelet must be
connected with the working surface through a cable with an integrated
1 MW resistor.

D ESD-sensitive components may by no means come into contact with
chargeable objects, including most plastic materials.

D When ESD-sensitive components are installed in or removed from equip-
ment, the equipment must be de-energized.

Safety Instructions 1�7

1070 073 875-101 (02.04) GB

1.6 Documentation, software release and trademarks

Documentation
This manual provides details of the programming and operation of the iPCL.
Not included are general procedures for project management and installa-
tion of controllers and their associated hardware.

Overview of available documentation Part no.

German English

Typ3 osa � Interface conditions
for project engineering and maintenance

1070 073 704 1070 073 736

Typ3 osa � Software installation 1070 073 796 1070 073 797

Decription of functions 1070 073 870 �

MACODA
Operation and configuration of the machine
parameters

1070 073 705 1070 073 742

Operating instructions
Standard operator interface

1070 073 726 1070 073 739

Operating instructions � Diagnostics Tools 1070 073 779 1070 073 780

Error Messages 1070 073 798 1070 073 799

PLC project planning manual,
Software interfaces of the integrated PLC

1070 073 728 1070 073 741

iPCL system description and
programming manual

1070 073 874 1070 073 875

ICL700 system description,
Program structure of the integrated PLC
ICL700

1070 073 706 1070 073 737

DIN programming manual
for programming to DIN 66025

1070 073 725 1070 073 738

CPL programming manual 1070 073 727 1070 073 740

CPL-Debugger Operating instructions 1070 073 872 �

Tool Management � Parameterization 1070 073 782 1070 073 793

Software PLC
Development environment for Windows NT

1070 073 783 1070 073 792

Measuring cycles for
touch-trigger switching probes

1070 073 788 1070 073 789

Universal Milling Cycles � 1070 073 795

. In this manual the floppy disk drive always uses drive letter A:, and the
hard disk drive always uses drive letter C:.

Special keys or key combinations are shown enclosed in pointed brackets:
D Named keys: e.g., <Enter>, <PgUp>,
D Key combinations (pressed simultaneously): e.g., <Ctrl> + <PgUp>

Safety Instructions1�8

1070 073 875-101 (02.04) GB

Release

. The descriptive information contained in this manual applies to:
Software version: V7.x

The current release number of the individual software modules can be
viewed by selecting the �Control-Diagnostics� softkey in the �Diagnostics�
group operating mode.

The software version of Windows95 or WindowsNT may be displayed as fol-
lows:
1. Click the right mouse button on the My Computer icon on your desktop.
2. Select Properties.

Trademarks
All trademarks of software installed on Bosch products upon delivery are the
property of the respective manufacturer.

Upon delivery, all installed software is copyright-protected. The software
may only be reproduced with the approval of Bosch or in accordance with the
license agreement of the respective manufacturer.

MS-DOSr and Windowst are registered trademarks of Microsoft Corpor-
ation.

PROFIBUSr is a registered trademark of the PROFIBUS Nutzerorganisa-
tion e.V. (user organization).

SERCOS interfacet is a registered trademark of the SERCOS interface
Joint VDW/ZVEI Working Committee.

System Overview 2�1

1070 073 875-101 (02.04) GB

2 System Overview

2.1 Functionality

iPCL is a software PLC integrated into the NC control. Without additional
hardware iPCL is integrated into:
D the PNC plug-in card
D the type 3 osa component group osa master P-L and osa master P-XL.

Thus a secure functionality is assured independently of Windows.

I/O�s are connected via PROFIBUS-DP, enabling RM65M-16DP, B~IO-
modules to be used, for example.

For the operation and programming of iPCL, the following configuration soft-
ware is required:
WinSPS: Creation of the PLC application program with functional exten-

sions for communication between PLC and NC (APS modules)
WinDP: Configuration of the PROFIBUS-DP

Communications with the WinSPS, WinDP and other programs are handled
by the TCP/IP standard protocol with the use of the BUEP (Bosch transfer
protocol) command language.

For the creation of the PLC program or individual program modules in the
programming language C, the C compiler and linker are also required.

. For additional essentials related to iPCL and to operating decentra-
lized peripherals via the PROFIBUS-DP, refer to the Online Help in
WinSPS and WinDP.

System Overview2�2

1070 073 875-101 (02.04) GB

2.2 Hardware platforms

iPCL is integrated in:
D the PNC plug-in card
D the Typ3 osa component group osa master P-L and osa master P-XL.

iPCL in PNC (e.g. in the operating terminal BT205)

+−

PROFIBUS-DP

D B~IO K-DP

D B~IO K-DP

D Decentr. I/O
RM65M-16DP

Ethernet

Ethernet
network

Main computer

Alternative external PLC
programming unit Ethernet

BT205 with PNC plug-in card
and as PLC programming unit

PROFIBUS-DP

PNCDecentralised I/O�s

iPCL in the osa master P-L/XL (Typ3 osa)

PROFIBUS-DP
D B~IO K-DP

D B~IO K-DP

D Decentr. I/O
RM65M-16DP

Ethernet

Ethernet
network

Main computer

Alternative external PLC
programming unit Ethernet

osa master P-L with iPCL

PROFIBUS-DP

D osa master P-L
D DCIO

Typ3 osa
control

Example:
osa rack 2,
containing

Digital I/O

Analogue I/O

PC operating panel, also
as PLC programming unit

Decentralised I/O�s

System Overview 2�3

1070 073 875-101 (02.04) GB

2.3 iPCL extensions

The maximum I/O area and the PLC user memory (MACODA
parameter 2060 00210) are determined by licence:

Type Peripherals User memory

iPCL_1 (PNC) 16 kb for inputs
16 kb for outputs

32 kbytes

iPCL_2 (PNC) 256 kb for inputs
256 kb for outputs

128 kbytes

iPCL_3 (PNC) 8 kb for inputs
8 kb for outputs

512 kbytes

iPCL_4
(osa master P-
L/XL)

-256 bytes for inputs
-256 bytes for outputs

Default: 200 kb depending
on free memory in the osa
master P-L/XL

Because the data field and data buffer are included in every hardware ex-
pansion level, they do not reduce the size of the user memory! Just like the
program and organization modules, the data modules are stored in the PLC
user memory.

Additional options
OPC server functions are available. It enables MADAP STUDIO to be used
together with the PNC.

System Overview2�4

1070 073 875-101 (02.04) GB

2.4 Data backup

PNC
iPCL uses PNC�s own memory (SDRAM) and the hard disk of the base unit
into which the PNC is plugged.
Optimum functional security of the iPCL in the PNC is attained by using a
UPS (uninterruptible power supply), which bridges a potential power loss to
allow essential PLC and NC data to be backed up to hard disk and leads to a
delayed shut down of the Windows NT operating system.

RAM filing system backed up in a
file:

PLC program (SoftSPS.bin)

Fixation list (Fix.bin)

Status (Status.bin)

PNC hardware platform

Memory for cyclic
backup

residual data, areas and FIFO�S backed
up in a file

Hard disk
Mount directory

Backup
on shutdown
(as file)

residual data
and areas and
FIFO�s

Memory for program
execution

Backup by iPCL
on shutdown

residual data
and areas and
FIFO�s

Backup on
shutdown
after iPCL has
ended

SDRAM

Parts program

Machine data

PLC program
(SoftSPS.bin)
Fixationlist
(Fix.bin)

Status
(Status.bin)

Memory for
RAM filing system

PLC program
(SoftSPS.bin)
Fixation list
(Fix.bin)

Status
(Status.bin)

Parts program

Machine data

Data comparison
for every
amendmentiPCL memory

Base device (e.g. PC operating panel)

System Overview 2�5

1070 073 875-101 (02.04) GB

osa master P-L/XL (SNCI4)

iPCL uses various memory areas of the component group
osa master P-L/XL:
D SDRAM (dynamic mamory) for PLC program and data in use.
D SRAM (static memory) for PLC program and data for switched off control

and cyclic backups.
D FEPROM for additional back up of the PLC program.

osa master P-L/XL (SNCI4) hardware platform

SDRAM

SRAM

FEPROM

usr-fep

PLC program
(SoftSPS.bin)

The data that have
to be backed up
cyclically are
determined in the
OM2 or under
program control

Memory for
RAM filing system

PLC program
(SoftSPS.bin)
Fixation list
(Fix.bin)

Status
(Status.bin)

Parts program

Machine data

PLC program
(SoftSPS.bin)
Fixationlist
(Fix.bin)

Status
(Status.bin)

iPCL memory

Data
comparison
after every
amendment

Manual backup
by command

Memory for cyclic
backup

residual data
and areas and
FIFO�s

Memory for program
execution

residual data
and areas and
FIFO�s

System Overview2�6

1070 073 875-101 (02.04) GB

Notes:

Configuration 3�1

1070 073 875-101 (02.04) GB

3 Configuration

3.1 Connecting to the system

Registering iPCL via MACODA
iPCL has to be registered in the MACODA parameter 2060 00200. Apart
from that further parameters can be changed:
D 2060 00200: Selection of the PCL.

Must be set to iPCL (= 4).
D 2060 00210: Maximum size of the user program.

For the PNC the size may be limited by
licence, (for detailed information, refer to Section 2.3)

D 2060 00211: Max PLC computing time in %.
(see Section 8).

Interfacing with Peripherals
The interfacing with peripherals is viy the serial filed bus system PROFI-
BUS-DP via the PROFIBUS-DP Busmaster interface:
D for base devices with PNC: on the �PNC-PCI card�
D for the Typ3 osa hardware: on the component group �osa dc I/O�

The maximum I/O area is determined by licence.

Reference list:
The bus master monitors the existence of slaves and transfers this data to
the iPCL.

Error functions:
The error functions are dependent on the bus system used. The PROFI-
BUS-DP field bus features a comprehensive diagnostic system whose
messages are made available by the iPCL bus master.

System clock management
The system timing, which can be processed in the PLC program via the sys-
tem area, is generated by the clock source onboard the PC.

Configuration3�2

1070 073 875-101 (02.04) GB

3.2 Startup of the iPCL
There follows the initialization and the start-up diagram for the iPCL. This
procedure is the same for all hardware platforms.

y

Initialization

Load fixation list
Read inputs

System stop

Mains ON

y

n

Stop startup*)

(Stop request)

n

Startup mode=1 (PNC)
S1 =1 (osa master P-L/XL)
no PLC program
no or missing fixation list
Residual error recognised
(while residual test flag set)

no backup possible to SDRAM (PNC)
or to SRAM (osa master)
(while flag set for cyclical)
backup in the OM2)

S

S
S
S

S

Seriouserror?

I/O state

Cyclical program
processing (OM1)

y

y

n

n

y

y

n

n

*) at least one of the stop requests
leads to a start-up stop or operating
stop.

Restart OM7
available?

Restart OM7
residual?

Stop command on
�Stop�?

Restart OM5
residual?

Restart OM5
available?

Program error or
stop request? y

Stop
processing*)

Final Initialization

RUN
Request error or

stop
eliminate

Trigger reset

Eliminate error

Restart OM5
(not residual)

Restart OM5
(residual)

RUN

Request error or
stop

eliminate

Restart

Restart OM7
(not residual)

Restart OM7
(residual)

Restart

Cold start flag
set?

n

y

Load PLC program

n

Configuration 3�3

1070 073 875-101 (02.04) GB

3.2.1 Initialization of the iPCL

In the initialization phase the iPCL operating system starts up.

Initializing special markers
The special markers SM21.0 to SM31.7 (see below: �Exceptions�) are pre-
initialized during �New start� and �Restart�. They are subsequently modified
in accordance with their function.

Initialization values
SM 26 = FFFFH

SM 31.1 = 1
All others = 0

Exceptions for initial start
SM 20.0 Reset impulse for new start and restart

Is set to 1 for iPCL new start and restart. Marker is deleted if
OM1 has been processed at least once.

SM 20.1 Buffer fault
Is set if the buffering of residual data was not correct.

SM 20.2 Flashing marker
Flashes at 2 Hz after iPCL startup

SM 20.3 Block outputs
Is set according to the requests for output blocking. Always up-
dated during I/O state.

SM 20.4 Fixation markers
Is set in accordance with the fixation request. Always updated
during I/O state.

SM 20.5 Data backup error
Is set if the buffering of residual data was not correct.

SM 20.6 Non-residual cold start
Is set when the cold start has occurred and all residual areas
were deleted.

SM 20.7 Reset impulse for new start and program load
Is set to 1 for iPCL new start and after program load. Marker is
deleted if OM1 has been processed at least once.

Configuration3�4

1070 073 875-101 (02.04) GB

3.2.2 Startup diagram

Startup conditions
After initialization the actual iPCL Startup begins.
During startup an attempt is made by the PLC program to load various files
and data. Here different settings and potential events during the run up are
taken into account.
D Switch setting S1
D residual or non-residual startup characteristics (see page 3�5)
D after startup stop (for new start, see page 3�7)
D after processing stop (for restart, see page 3�8)

Switch setting S1
The loading of the PLC program and the data occurs with the pre-setting of
the rotary switch S1 on the osa master P-L/XL or startup mode in �PNC con-
trol� for the PNC.

The following switch settings are possible:

Switchsetting
or startup
mode

Characteristics (PNC / osa master P-L/XL)

0 Startup from the RAM filing system. The PLC program and
residual data are loaded.
The PLC program is starting.

1 As 0, but the PLC program will not start.

2 The PLC program backed up on hard disk (PNC) or in the
user FEPROM (usr-fep) and residual data are being loaded.
The PLC program is starting.

4, 5 As 0.

6 As 2.
Additionally the RAM filing system is being newly created.
The fixation list is being deleted.

7 As 0.
Simultaneously the backup of the RAM filing system is de-
leted.

Configuration 3�5

1070 073 875-101 (02.04) GB

Startup characteristics
The startup characteristics are dependent on whether events such as �stop�
or �new start� have already occurred that cause a certain startup procedure:
D After a startup stop or an initial �Power ON� a �New start� is initiated for

the iPCL.
D After a processing stop a �Restart� is initiated (see page 3�8).

. Both startup types can occur non-residual or residual.

For each startup type there is an organization module available, which if it
has been programmed in the PLC program, will run depending on the stop
condition that has occurred:
OM5: New start OM, non-residual or partially residual
OM7: Restart OM, non-residual or partially residual

If the startup OMs are not programmed in the PLC program, then the corre-
sponding startup proceeds without OM processing. In all startup types the
factors from the OM2 are used or if they are not available, then default values
are used.

. If iPCL starts up with default settings, then it is always a �non-residual
startup�.

The data affecting the system area (times for time-controlled OMs, residual
limits) can then be modified in the respective startup OM.

. For iPCL there is no full-residual restart but only a partial-residual star-
tup. The areas of the markers, times and counters defined as residual
are kept. A full-residual startup, where the PLC program continues at
the exact place in the program where it was stopped, is not possible
because also the NC, which is connected to the iPCL, does not recog-
nize a residual startup.
Consequently in the following text the expression �residual� in associ-
ation with the iPCL is always to be interpreted as �partial-residual�!

Startup sequence
The iPCL startup sequence proceeds as residual or non-residual.
1. Load inputs
2. Overlay fixation: it already works for direct access from the startup OM.

However, the output to the peripherals does not occur directly, and the
output image is not updated.

3. Stop command query:
D if stop then a system stop is carried out
D if no stop then the new start OM(OM5) is processed. This OM permits

the use of all PLC instructions (also applies to restart OM(OM7)), e.g.,
to set outputs, to initialize or start timer or counter values, to manipu-
late values in the system area (to influence initialization values), or to
modify residual limits.

4. Final initialization: Once the startup OM has been processed, the final in-
itialization is executed, utilizing the values from the system table and sys-
tem area. Values such as time monitoring, OM time values, etc., are
adopted or updated.Provided the respective setting has been made in
the OM2, the specified data module is copied into the data buffer.

5. Execute complete I/O state

Configuration3�6

1070 073 875-101 (02.04) GB

6. Start program processing on the OM1.
7. Start timeframe processing for the times and release time OM proces-

sing.

. If for an osa master P-L/XL card the PLC program is switched again to
STOP after the startup of the controller (also applies to loading with
control STOP), the READY signal drops and only returns if the rotary
switch is briefly turned to a setting > 7. This behaviour is determined
by the hardware and cannot be influenced by software. When a pro-
gram or module is reloaded without control stop, the READY signal
stays on.
In the PNC the READY signal returns automatically after the restart of
the PLC program.

Cold start flag
When the cold start flag is set, this forces a non-residual startup. This flag
can be manipulated by either operating system or PG.

D Operating system: When the iPCL is switched on the PLC program is
loaded from the softsps.bin file into memory. If an error occurs in the
course of this process, the cold start flag will be set.

D Programming unit (WinSPS): The cold start flag is set when �loading en-
tire program with reset of residual operands�.

Configuration 3�7

1070 073 875-101 (02.04) GB

3.2.3 Startup conditions

Startup without error
A startup without error occurs when, subsequent to error-free program pro-
cessing, the controller (NC and iPCL) is cycled OFF and ON again:
D The PLC program can be loaded again error-free into the PLC user me-

mory.
D The residual areas are error-free
D The selected new start OM(OM5) is processed.
D During creation by WinSPS, the fixation lists are immediately backed up

in the filing system. These fixation lists are loaded when the controller is
started up.

D The cold start flag is not set.
D The startup is executed, and cyclical program processing is started.
D After PLC has been put into STOP state by the programming unit, it does

not remain in this state when PLC is restarted.
If an error occurs at this juncture, the iPCL will enter Process-STOP, and will
no longer enter Startup-STOP.

Startup with startup STOP
In the event that during the startup subsequent to power ON a �hardware
fault� or �STOP request� occurs, the iPCL will remain in Startup-STOP
mode.

Reasons for a stop request can be:
D No PLC user program in the directory (PNC) or in the filing system (osa

master P-L/XL).
D Startup mode (PNC) or

osa master P-L/XL rotary switch set S1= 1 (corresponds to stop)
D Severe faults occurred during controller run-up, e.g. faults originating in

the installation of peripheral drivers, initialization of PLC operating sys-
tem, or communication channel setup.
These faults produce the message �System stop� and do not permit a re-
triggering, i.e. the controller has to be resarted (reset).
Faults that produce a controller stop are reported to the NC and are dis-
played on the operating panel in the INFO dialogue of the standard BOF.

D Incorrect or non-existent fixation lists file in the PNC root directory. The
iPCL stays in startup stop mode until a fixation list is loaded. Loading an
�empty� list deletes the fixation identifier.

D Flag for residual test has been set in OM2, and residual error has been
detected.

D Flag for cyclical backup set in the OM2 and operand backup to the static
RAM (osa master P-L/XL) or SDRAM (PNC) is not possible.

Startup stop mode is left as soon as the fault has been fixed. By command
from the programming unit (WinSPS) or in the PNC control, startup stop
mode can be left by switching to RUN.

. After startup stop there always follows a �New start�.

Configuration3�8

1070 073 875-101 (02.04) GB

Startup with processing STOP
Once the program processing has begun with the OM1, and an error or a
STOP request occurs, this will cause a Process-STOP condition.
This stop condition is left as soon as the fault has been fixed or if the reason
for the stop has disappeared and the switch in the iPCL control panel was set
to RUN.

The stop state can also be left by command from the programming unit
(WinSPS).

Non-residual new start or restart
The non-residual startup mode is used in the following cases:
D The system area flag is set in OM2.
D Subsequent to a memory error, as this precludes a residual startup.
D A non-residual startup was requested from the PG (WinSPS) (only poss-

ible when loading).

To describe the process in detail:
D All image areas (residual and non-residual) are deleted.
D Fixation is deleted upon new start, and retained upon restart.
D Stored interrupts are deleted.
D Application stack is reset.
D Outputs are enabled.
D Inputs are loaded.

Residual new start or restart
The residual startup mode is used in the following cases:
D No memory error has occurred.
D and no non-residual startup was requested by PG (WinSPS) or via the

OM2.

To describe the process in detail:
D Non-residual areas are deleted.
D Timer values are transferred.
D Outputs are enabled.
D Inputs are loaded.

. If an error occurs while loading the residual data, an error message is
generated and the PLC program does not start automatically. The re-
sidual data area is re-initialized. The PLC program can be started either
with a renewed run up of the controller or with the PG (WinSPS).

Configuration 3�9

1070 073 875-101 (02.04) GB

3.3 Data backup and residual characteristics of the iPCL

Data backup is essential so that relevant PLC data are available for con-
tinued processing even after a power failure when the RAM filing system was
newly created or in an error situation.

Data
The following data and files are associated with a current project:
D Residual areas:

D Identified data modules
D Data fields and data buffers
D Markers
D Times
D Counters
D FIFOs

D Files:
D PLC program
D Fixation lists
D Status

3.3.1 Data backup depending on hardware platform

PNC
PNC has a dynamic RAM (SDRAM) that does not allow storage of data
when the controller is switched off.

The PLC application program is in the filing system, the data in the RAM.
When the PNC is run up the data and the PLC program are automatically
loaded from the local hard disk or from an additionally mounted directory of a
hard disk (e.g. from a network computer) into the PLC user memory.

During program execution the user can, under program control, store certain
residual data (cyclical) in a reserved SDRAM area, but the data will be lost if
the controller is switched off.

Configuration3�10

1070 073 875-101 (02.04) GB

PNC

dynamic RAM
(SDRAM)

Backup to mounted directory
of a hard disk

residual data
(Backup)

Directory: ../usr-fep

- softsps.bin (backup
 user-
 controlled)

Filing system

- softsps.bin
(- fix.bin)
..

Directory: root

PLC user memory

- Data
- PLC program
- Fixation list

Program controlled backup via
- OM2: residual area identifying and backup

execution.
- Program: residual area identifying and start

backup in program by command.

Backup to local
hard disk

Directory:../pncosa

PC

PC

- Data
- PLC program

Load during run up:

Backup
on
shutdown

 User controlled backup
 via WinSps (system commands)

- OM2 controlled
- program controlled at
 program end

Backup:

Backup on shutdown

. During normal operations the user has available the operating func-
tions, loading and storage of the PLC program and possibly backup of
the PLC project in the usr-fep directory. Cyclical backups are con-
trolled in the OM2 or via program.

Power failure:
The PNC card is in a PC that must be attached to an �uninterruptible power
supply� (UPS). The UPS ensures that in case of a power failure there is suffi-
cient time for an orderly shutdown of iPCL and the Windows 95 or NT operat-
ing system. The essential backup of residual data, the PLC program, status
and fixation list can all take place.

On the next startup PLC will load the entire backup data: the softsps.bin file,
with respect to the PLC program, some other files and additional residual
data that were backed up previously.

. A backup of data to hard disk is not possible if Windows goes down but
iPCL continues to run. The result is a loss of data as a re-boot is
necessary.

Configuration 3�11

1070 073 875-101 (02.04) GB

osa master P-L/XL
The �static RAM� (SRAM) of the osa master P-L/XL can save the state and
values of residual data, areas, fixations, the PLC program, etc. even if the
controller is switched off.

During operations the PLC application program is a file in the filing system of
the Typ3 osa. From there it is loaded into the PLC application memory when
the iPCL is run up.
PLC user data are loaded from the static RAM of the osa master P-L/XL into
the PLC application memory.

Filing system

PLC user memory

static RAM (SRAM) FEPROM

- softsps.bin
- fix.bin
..

- residual data
(cyclical backup)

- Data
- PLC program
- Fixation list

Directory: ../usr-fepDirectory: root

- softsps.bin (backup user-
 controlled)

osa master P-L/XL

- Data
- PLC program

Load during run up:

 User controlled backup
 via WinSps (system commands)

- OM2 controlled
- program controlled at
 program end

Backup (see above):

Certain residual data designated by the user are saved under program con-
trol in a special RAM area (SRAM). After the controller is switched off these
data and the filing system remain in tact. On the next run up these cyclically
saved data and the PLC program are available.

Additionally the PLC program can be saved in the FEPROM (usr-fep), so
that in case of a fault or if required the PLC can be loaded with the PLC pro-
gram saved there.

. During normal operations the user has available the operating func-
tions, loading and storage of the PLC program and possibly backup of
the PLC project in the usr-fep directory. Cyclical backups are con-
trolled in the OM2 or via program.

Power failure:In case of a power failure all relevant data from the last cyclical
backup, the PLC program, fixation lists, etc. are in the SRAM. On the next
run up PLC loads the PLC program saved in the SRAM and also takes into
account the residual data from cyclical backups in the SRAM.

Optimal functional data security for iPCL is attained with the help of the static
memory on the osa master P-L/XL . Every amendment is written to static
memory, the contents of which are maintained even when the controller is
switched off.

Configuration3�12

1070 073 875-101 (02.04) GB

Selection of the residual data
for cyclical backup

One can specify which residual data are to be backed up cyclically to the
SRAM Typ3 osa or SDRAM in the PNC.

D The cyclical backup of residual areas is carried out during each I/O state.
The establishment that data are to be backed up cyclically into static
RAM or the osa master P-L/XL or RDRAM of the PNC occurs via entries
in the OM2 (see Section 3.3.2 Establishment of the residual areas in the
OM2). At program end all residual data specified in the OM2 and identi-
fied residual areas for M / T / Z / DP / DF are defined.

Note osa master P-L/XL: Because the process of writing to static RAM is
much slower than that of writing to dynamic RAM, and thus causes the
PLC cycle to be extended, the residual areas to be selected must be kept
as small as possible.

D The cyclical backup procedure may be replaced by PLC instructions that
perform the backup of the specified residual areas upon request (refer
to Section 7.30 Backing up/loading residual areas): in the PLC program
backup routines can be defined and executed at specific coordination
points. This allows defined data to be backed up at specific times.
For the backup of residual areas and of the modules designated as resid-
ual DM to the SRAM of the osa master P-L/XL or the PNC SDRAM the
following measures are required:
The residual identification E for the maximum 128 data modules must be
specified in the symbol file (For example: DM1,E DM_K01).The residual
limit definitions must also be declared in this case because, when copy-
ing from static into dynamic RAM, these areas must be known already
during the startup sequence. The user disables the definition �Cyclical
backup�.

3.3.2 Defining residual areas in the OM2

;DW 2: Initialization flag (entries permitted)
;��
; Entry 0 = D O N O T test or execute function
; Entry 1 = Verify and/or execute function

DEFW W 2#0000000100000100
; *******|*****||* *: not used
; | |+––––––– Check nominal cycle time
; | +–––––––– Residual start if possible
; +–––––––––––––– Copy data module into data buffer

;DW 3: System settings (entries permitted)
;––
; Entry 0 = D O N O T test or execute function
; Entry 1 = Verify and/or execute function
;
DEFW W 2#0000000001000000
; *********||||||| *: not used
; ||||||+–––––– Markers \ residual areas for
; |||||+––––––– Times \ cyclical Backup to the
; ||||+–––––––– Counters \static RAM, as per
; |||+––––––––– Data field /per defined residual
; ||+–––––––––– Data buffer / limits
; |+––––––––––– Data modules /
; +������������ cyclical Backup of the marked areas

Configuration 3�13

1070 073 875-101 (02.04) GB

;DW 7: Number of first residual time (entries permitted)
;–––
; Entries from 0 to 256 are possible
; 128 = Residual for timer loops T128 through T255
; 256 = No residual

DEFW W 128

;DW 8: Number of first residual counter (entries permitted)
;–––
; Entries from 0 to 256 are possible
; 128 = Residual for counters Z128 to Z255
; 256 = No residual

DEFW W 128

;DW 9: Number of first residual marker (entries permitted)
;–––
; Entries from 0 to 8192 are possible
; 128 = Residual from marker byte M128/marker bit M128.0; the residual
; definition of residual limit via byte addresses
; 8192= No residual

DEFW W 4096

;DW 10: First residual address in data buffer (entries permitted)
;–––
; Entries from 0 to 512 are possible
; 256 = Residual from data buffer byte DP256
; 512 = No residual

DEFW W 256

;DW 33: First residual address in data field for backup to; static
RAM (entries permitted)
;��
; Entries of 0 and 32768 possible
; 16384 = Residual from data field byte DF16384 in static RAM
; 32768 = No residual in static RAM
; Limit applies only to backup into static RAM; this area
; takes precedence over the data field, the remainder of which is com-
pletely
; backed up to hard disk for residual storage;

DEFW W 16384

Configuration3�14

1070 073 875-101 (02.04) GB

3.3.3 Residual characteristics depending on hardware platform

Summary of residual characteristics under different hardware platforms

PNC with UPS osa master P-L/XL

Backup of residual data is essential when powering off and
on shutdown.

Backup of residual data into static RAM is required under
program control for power off.
I.e. power off immediately interrupts program processing
and means that the data and residual conditions produced
in this cycle cannot be backed up any more.

All residual areas/ranges can be backed up, provided they
have been defined as residual. In this context it is important
that the backed-up data originate from an PLC cycle.

The entire program management, i.e. which data are to be
saved under what preconditions, must be handled by the
programmer.

The PLC cycle time is not affected. Because the process of writing to static RAM is consider-
ably slower than that of writing to dynamic RAM, the PLC
cycle is extended. Accordingly, the residual areas must be
defined as small as possible.

Conclusion:
With a PC with UPS data backup can be assured in case of
a power failure.

Conclusion:Absolute data security cannot be ensured des-
pite a cyclical and request-specific data backup procedure.
Independent of the position in the program where proces-
sing is currently taking place, a power failure will cause an
instant system stop without the backup of residual data.

Configuration 3�15

1070 073 875-101 (02.04) GB

3.3.4 Residual operation

The decision of residual/non-residual operation takes place in the OM2
/DW2, Bit2: �Residual if possible�.

In residual operation, the statuses of the designated residual operands are
retained after a STOP/RUN and shutdown operating mode change.

Without special arrangements in the OM2 or the system area this means for
the backup of residual data in the static RAM (osa master P-L/XL) or in the
directory on the local hard disk (PNC):

D The upper half of the marker range M4096 through M8191 is residual.
D The upper half of the counters Z128 through Z255 is residual.
D The upper half of the timers T128 through T255 is residual.
D The upper half of the data fields DF16384 through DF32767 is always re-

sidual.
D Data modules marked with residual ID are always residual.

The user can shift the so-called �residual limits� as desired. To this end, both
OM2 and system area provide appropriate measures.

3.3.5 Non-residual operation

The decision of residual/non-residual operation takes place in the OM2
/DW2, Bit2: �Residual start if possible�.

In non-residual operation, a STOP/RUN operating mode change or
Power-Off/On cycle will be followed by clearing all of the following:

D All markers
D All timers
D All counters

This occurs even before processing any startup OMs.

The entire data field, DF0 through DF32767, is always residual, regardless
of the position of the residual switch.

. For the backup of a data field in static RAM (osa master P-L/XL) or in the
mounted directory of a hard disk (PNC) the defined residual limit (de-
fault OM2 or system area) applies.

. For the backup of data modules into static RAM (osa master P-L/XL) or
into the mounted directory of a hard disk (PNC) only those DBs are
taken into account that are marked with the residual ID (E) in the sym-
bol file.

Configuration3�16

1070 073 875-101 (02.04) GB

3.3.6 Buffer failure, data backup fault

Buffer failure
The special marker SM20.1 buffer failure indicates a backup fault in the sav-
ing of residual data into static RAM of the osa master P-L/XL hardware or into
the directory of the local hard disk (PNC).

The marker is set in the following cases:
D If during the run up of the iPCL it is recognised that no correct backup of

residual data into static RAM of the osa master P-L/XL hardware or into
the directory of a hard disk (PNC) was possible either during program
processing or at shutdown of the last control cycle. The special marker is
set while processing a startup OM and is reset once the PLC startup has
concluded.

D During program loading or post-loading, the maximum permitted number
of DBs with residual ID was exceeded. The special marker remains set
during program processing, and is reset while loading, provided that the
maximum permitted number of DBs with residual ID is maintained.

D The cyclical backup of residual data in the I/O state was not correctly ex-
ecuted, the maximum permitted number of DBs with residual ID was ex-
ceeded subsequent to online modifications. The special marker remains
set during program processing.

. If the special marker SM20.1 is set then the backup of all residual oper-
ands is declined both cyclically and via PLC command into the static
RAM of the osa master P-L/XL hardware or into the directory of the
local hard disk (PNC) but the iPCL continues to RUN. The interpreta-
tion of the SM20.1 and/or of system area word S116 permits error
handling.

Data backup error
The special marker SM20.5 (data backup error) is set when, at the time of
shutdown, the backup of residual data to the hard disk was faulty. The
special marker is set during the processing of the startup OM5 power-on and
is reset prior to the PLC startup OM1.

Peripheral Operation 4�1

1070 073 875-101 (02.04) GB

4 Peripheral Operation

The connection to the periphery is always via the PROFIBUS-DP. The PLC
I/O data are transferred in I/O state or via a command to the image of the field
bus master. The configured I/O modules (slaves) are serviced from there.

RAM

PLC I/O
image

Bus master

I/O bus
master image

Periphery

I/O module
(slaves)

I�

O�

Editor I

Editor O

Acyclical transmission

PROFIBUS-DP: Editor I/O

The bus master creates diagnostic tables on the basis of the I/O configur-
ation list. The error messages and error diagnostic functions generated in
this manner depend on the bus system being used, and must be evaluated
with the aid of the bus-specific software tools.

4.1 Data exchange machine <��> PLC

The data exchange both to the machine (PROFIBUS-DP) and the NC (bit
interface) is as follows:

In the PNC:
D The machine and NC inputs (bit interface) are read at the start of the PLC

process.
D The machine and NC outputs (bit interface) are given out at the end of the

PLC process.

In the osa master P-L/XL:
D As determined by the DCIO, for the osa master P-L/XL both the machine

inputs and the machine outputs (PROFIBUS-DP) are replaced at the
start of the PLC process.

. The consistency requirements of the slaves are maintained.

Peripheral Operation4�2

1070 073 875-101 (02.04) GB

4.2 PROFIBUS-DP

Configuration
The I/O configuration for the PROFIBUS-DP is accomplished with the aid of
the WinDP Configuration & Diagnostic Tool.

Data exchange
The data exchange between bus master image and peripheral devices is li-
mited to those slaves that have been configured.

Data consistency
Data consistency is maintained only for those bus stations that have been
appropriately configured. The data width depends on the default values
taken from the device specification files.

Peripheral errors
The PROFIBUS-DP field bus features a comprehensive diagnostic system
whose messages are made available to the PLC by the bus master. The
WinDP software also incorporates the corresponding diagnostic sys-
tem.When peripheral errors have been remedied, the PROFIBUS-DP re-
starts automatically.

Properties
General:
D Max. 124 slaves
D Max. 244 bytes each inputs and outputs per slave

(max. 122 bytes consistent inputs or outputs)
D PROFIBUS-DP baud rates can be set to between 9.6 Kbits/s. and 12

Mbits/s.

Only PNC:
D PROFIBUS-DP V1
D Max. of 8Kbytes each inputs and outputs

Only osa master P-L/XL:
D PROFIBUS-DP protocol after EN50170
D Max. of 256 bytes each inputs and outputs

Programming Basics 5�1

1070 073 875-101 (02.04) GB

5 Programming Basics

Programmable memory controllers (iPCL) process a program whose code
describes the controller task. This is accomplished with the use of special
programming languages that can be represented and printed out in various
modes.

5.1 Programming

Instruction List (IL):
The IL comprises a text-based programming language in which the con-
troller tasks are written in assembler notation.

Structure of controller instructions:

Controller instruction Line comment

Operations
part

Operand
attribute

Source
operand

Destinatio
n operand

OPP OPA S-OPD , D-OPD ; Command description

Examples
U I0.0
U W –Name , O
L B O0 , B
T D C , M12
MUL W 1234 , D

Ladder Diagram (LD)
When using the LD representation method, the controller tasks are de-
scribed by means of standard circuit diagram symbols.

Function Block Diagram (FBD)
With the programming language FBD logical connections are described
using graphic symbols.

Sequential Function Chart (SFC)
The SFC represents a graphical programming interface, which is used to de-
scribe the sequentially processed machine tasks in the form of a cascade
sequence. Before it can be loaded into the PLC, this representation is then
translated into the executable IL programming language.

Structured Text (ST):
Structured text programming uses a text-based programming language in
accordance with IEC 611313. Structured text is a high-level language which
is easy to learn, and which facilitates compact formulation of programming
tasks. Examples of its strong suits are the implementation of complex testing
or regulating tasks.

Programming Basics5�2

1070 073 875-101 (02.04) GB

5.2 Program Structure

In order to make PLC programs comprehensible and easy to read, struc-
tured programming is used in the PLC. Programs are divided into function-
ally associated program sections. To achieve structural clarity, various types
of program modules are available, each handling specific tasks. Program
processing can be cyclical, time or event driven.
An exemplary program structure is shown in section 5.6.4.

5.3 Module Types

The controller utilizes the following module types:
D Organization modules (OM)
D Program modules
D Data modules
D APS modules

All modules are activated by being invoked by the PLC program. This can
occur unconditionally or contingent upon a condition. A condition may be the
result of a logical or compare function or an arithmetic operation.

5.3.1 Organization modules (OM)

The organization modules perform all administrative or management func-
tions for the controller program. Although they are programmed in the same
manner as the program modules, only the system program invokes organiz-
ation modules. All organization modules make use of the full instruction set
of the PLC. There is no limitation to module size.

Each organization module is processed only subsequent to a defined condi-
tion; it cannot be called in the course of program processing.

Organization modules can be divided into 7 functional groups:
OM1 Program module that is called cyclically by the system pro-

gram, and that can be used as a distribution module for the
overall program.

OM2 Non-executable definition module (initialisation table) contain-
ing definitions for the controller system (residual limits, etc.)
that are declared by modifying certain table entries.

OM5, OM7 Start-up modules that process various program sequences
during a controller power-up or restart.

OM8 Module that is called upon shutdown; here the application can
be brought to a defined state.

OM9 Error module that processes reactions when program errors
occur.

OM18-25 Time-controlled processing (time scale can be defined in
OM2).

OM30-63 Reserved.

Programming Basics 5�3

1070 073 875-101 (02.04) GB

The OM1 module must be concluded with either the EP (end of program) or
EM (end of module) instruction to ensure subsequent processing of the
input/output cycle (I/O state). With the exception of the OM2, all other organ-
ization modules can be concluded with either EP or EM, depending on the
respective tasks being carried out.

5.3.2 Program modules

The program modules (PM) contain program segments that are technically
and functionally interrelated. From within program modules, any number of
additional program modules and data modules may be called. In addition, all
program modules have access to the entire command set of the PLC. The
modules are not subject to a size limit.

As a rule, program modules are concluded with an End of Module (EM) in-
struction. If end of program (EP) is used, after it has been processed, a pro-
gram end follows and the I/O cycle is carried out. Then further program
processing begins again with the OM1.

Due to the option of parameterisation, the program modules may be written
independently of absolute operands. During the module call-up, the oper-
ands required for the current processing task are transferred to the program
module in the form of parameter values.

The following parameters can be declared:
D Input parameters: Operands, constants and modules
D Output parameters: Operands
D I/O parameters: Operands

5.3.3 Data modules

The data modules (DM) serve as storage areas for all fixed and variable va-
lues and text blocks that are used by the program. Therefore, during PLC
program processing, the user has the option of always keeping two data
modules enabled, each of which provides up to 512 bytes of memory capac-
ity.

The following applies to the processing of data modules:
D Before their respective data may be accessed, the data modules must be

enabled from within the program by means of module call instructions
(i.e., CM for the 1st DM, and CX for the 2nd DM).

D Within a given organization module (OM) or program module (PM), the
data modules remain current until other data modules are enabled by the
program.

D After the return to the primary module, the data modules active at the time
of the call-up of the base module are again activated.

D When the OM1 (cyclical program processing), and the start-up modules
OM5 and OM7 are called, no data module is active as yet.

Programming Basics5�4

1070 073 875-101 (02.04) GB

5.3.4 APS modules

The functions of the APS modules (PLC application modules) are integrated
into the firmware and the modules themselves merely contain the frame for
the actual function calls. This ensures that the APS functions always fit the
NC software. The mandatory call of the B01APSMN module at the start of
the OM1 is also dropped as this function is carried out within the firmware at
the start of PLC processing.

. In the PNC no access to the serial interfaces via the APS modules are
supported.

. If an existing program is taken over by an ICL project, the ICL project
APS modules have to be replaced by iPCL APS modules.
The integration of the program modules NcsLibW.pxh, IclLib.pxl,
B01Apsmn.pxl and B06Lgana.pxl can be ignored.

Programming Basics 5�5

1070 073 875-101 (02.04) GB

5.4 Program Processing

The application program is processed cyclically and can be interrupted by
time- or interrupt-controlled instructions.

I/O state,
image production,

communication

Processing
the

application program

Start,
Startup

Initialisation

Cyclical program processing
Once the iPCL has been initialised successfully, the actual program cycle
begins in OM1 with the first command of the application program. The cycle
time is measured from and until this point in time.

Subsequent to program processing, the processing of inputs and outputs
and servicing of communication partners occurs before the cyclical proces-
sing continues.

Time-controlled program processing
In the course of cyclical program processing, the program sequence can be
interrupted by elapsed times that can be defined in the time matrix. In this
process, interruption points are only module changes (calling a data module
does not rate as a module change). Program processing branches into an
OM that is directly assigned to time-controlled processing, processes the
program contained therein, and then returns to the interruption point.

In the event that the user avails himself of program module calls from within
time OMs, he should disable any other time-controlled processes. See also
Section Fehler! Es wurde kein Textmarkenname vergeben.5.16.

Programming Basics5�6

1070 073 875-101 (02.04) GB

5.5 Time Monitoring

The entire program processing, i.e. the PLC cycle, is subject to time monitor-
ing. Cycle time monitoring is used for this.

Cycle time monitoring comprises a security function that can be individually
adjusted. Appropriate selection functions are provided in the OM2 initialisa-
tion table (see Section 5.7). If the OM2 is not linked to the controller program,
this time will have a default value of 1.5 sec.

5.6 I/O state

The I/O state is always started after an EP (end of program) instruction, and
processes the image update for peripheral operation, the processing of fix-
ations and that of times / timers.

5.6.1 Fixing inputs, outputs & markers

The fixation imposes a fixed status mask on inputs, outputs and markers.
The resulting fixation masks are placed over the I/O images and markers in
each I/O state.

The fixation data are saved in a file in the controller filing system and are re-
loaded from there on startup. This file is updated with all changes to the fix-
ation masks.

The resetting of fixations can be carried out via the program unit (WinSPS) or
via PNC control.

The special marker SM20.4 indicates whether a fixation is active, i.e., at
least one bit is fixed.

Fixed inputs
Prior to entering the OM1 of the PLC program, the loaded status (input
image) is covered by the fixation mask. As a consequence, all input queries
return the status taken from the fixation mask as long as they have not been
changed by the PLC program.

Fixed outputs
Prior to the data exchange with the machine, the output status (output
image) is covered by the fixation mask. As a consequence, all process out-
puts have the status imposed by the fixation mask.

Fixed markers
Prior to entering the OM1 of the PLC program, the status of the markers from
the preceding PLC cycle is covered by the fixation mask. However, the
queries within the PLC program will return the fixed status only until the pro-
gram overwrites them.

Programming Basics 5�7

1070 073 875-101 (02.04) GB

5.6.2 Updating timers

Depending on the selected time matrix (resolution), the timers are updated
also during the I/O state. This means that the accuracy of the timer loops with
respect to the selected time matrix amounts to plus one PLC cycle (max.)
including the I/O state.

5.6.3 Cyclical processing

See Section 5.4

5.6.4 Application program structure

With the aim of providing a clear overview of the basic organization of pro-
gram management, the following diagram shows an example of the program
structure.

Program startup, one-time only

OM5, OM7

Program

PE

Program processing, cyclical

OM1

→ FC1

↑ CM PM1

← CM 1st DM 1. DM

CM 2nd DM 2. DM

EM

→ PM2

CM PM2 → PM3

← CM PM3.2

P0 I1 A P0

P1 O1 = P1

←

CM PM3.2 EM

P0 I10

P1 O10

←

EM

→ PM4

CM PM4 → PM5

← CM PM5 → PM6

← CM PM6

EM ←

EM

PE EM

↑ I/O state

≡ Module nesting depth →

Level 1 2 3 4n.... 63

Programming Basics5�8

1070 073 875-101 (02.04) GB

Time-controlled program processing
Processing always commences subsequent to the change of module (not
module call) that follows the expiry of the associated time interval.

OM18-OM25

Program

EM

Program processing subsequent to a program error
Processing always occurs upon the occurrence of the triggering criterion.

OM9

Program

PE

5.7 Initialisation table OM2

The OM2 is a system initialisation table that can be linked to the PLC pro-
gram as required. You will find a pre-configured module named OM2iPCL on
the WinSPS path of your programming unit.

An PLC program working without an OM2 utilizes pre-selected default va-
lues that are sufficiently useful for many applications.

Deviations from the pre-selected system defaults are declared in the OM2
through manipulation of the entered values. It is essential that the user
neither removes nor adds DEFW instructions.

This may be used for example, to shift residual limits, set cycle time limits,
etc.

The time matrix definition for the time OMs is also handled in the OM2.

The declarations and definitions stored in the OM2 are adopted by the sys-
tem upon Power-ON or in the case of a STOP/RUN command, even before
processing a startup OM that may be present; a part of the OM2 is copied
into the system area.

The following printouts of an OM2 exemplify all options of exercising control
over the system initialisation:

Programming Basics 5�9

1070 073 875-101 (02.04) GB

5.7.1 Printout of the OM2iPCL

;***
;*** ***
;*** I N I T I A L I Z A T I O N T A B L E ***
;*** ***
;*** ’i P C L’ ***
;*** ***
;***;
*** Last modification: 21.03.01, be ***
;***
;
;***
; OM2 : iPCL Initialisation table
;***
;
; – Must be integrated into each application program;
; that uses different default settings.
;
; – If no OM2 entry is made in the symbol file,
; default settings will be used.
;
; I M P O R T A N T N O T E , please observe in any case
; ==
;
; EACH change of data words (W) in forbidden address ranges
; ====
; may result in undefined PLC system performance.
;
;***
;

;DW 1: free
;––––––––––––––
DEFW W 16#0000
;
;DW 2: Initialisation flag (entries permitted)
;––
; Entry 0 = DO NOT test or execute function
; Entry 1 = Verify and/or execute function
;
DEFW W 2#0000000000000000
; *******|***||||* *: not used
; | |||+––––––– Check nominal cycle time
; | ||+–––––––– Residual start if possible
; | |+––––––––– Suppress cycle time monitoring
; | | during startup
; | +–––––––––– Max. I/O range for MMIMADAP diagnostics
; +–––––––––––––– Copy data module to data buffer
;

;DW 3: System settings (entries permitted)
;––
; Entry 0 = DO NOT test or execute function
; Entry 1 = Verify and/or execute function
;
DEFW W 2#0000000000000000
; *********||||||| *: not used
; ||||||+–––––– Markers \ residual areas for
; |||||+––––––– Timers \ for cyclical backup
; ||||+–––––––– Counters \static RAM, as per
; |||+––––––––– Data field /defined residual
; ||+–––––––––– Data buffer / limits
; |+––––––––––– Data modules /
; +–––––––––––– Cyclical backup of marked areas/ranges.

Programming Basics5�10

1070 073 875-101 (02.04) GB

;
;DW 4: free
;––––––––––––––
DEFW W 16#0000
;

;DW 5: Maximum cycle time (entries permitted)
;––
; Entries from 1 to 150 in multiples of time base 10 ms possible
; (10 ms to 1500 ms) for cycle time monitoring.
; Function execution at DW2 / Bit 1 = 1.
;
DEFW W 150
;

;DW 6: Copy data module to data buffer (entries permitted)
;––
; Entry of 0 – 1023 (data module number 0 – 1023) possible.
; (Function execution at DW 2 / Bit 8 = 1).
;
DEFW W 0
;

;DW 7: Number of first residual time (entries permitted)
;––
; Entries from 0 to 256 are possible
; 128 = Residual for timer loops T128 through T255
; 256 = No residual
;
DEFW W 128
;

;DW 8: Number of first residual counter (entries permitted)
;––
; Entries from 0 to 256 are possible
; 128 = Residual for counters Z128 to Z255
; 256 = No residual
;
DEFW W 128
;

;DW 9: Number of first residual marker (entries permitted)
;––
; Entries from 0 to 8192 are possible
; 4096 = Residual from marker byte M4096/marker bit M4096.0;
; definition of residual limit via byte addresses
; 8192 = No residual
;
DEFW W 4096
;
;$P

;DW 10: First residual address in data buffer (entries permitted)
;––
; Entries from 0 to 512 are possible
; 256 = Residual from data buffer byte DP256
; 512 = No residual
;
DEFW W 256
;
;
 ; Definition of timer OMs (entries permitted)
; ========================
; Entries as multiplier of base time 10 ms from 1 to 65535
; possible
; e.g. 0 = no timer–based processing
; 11 = 11 x 10 ms = 110 ms interval of processing time

Programming Basics 5�11

1070 073 875-101 (02.04) GB

;
;DW 11: time OM18
;––––––––––––––––
DEFW W 0

;DW 12: time OM19
;––––––––––––––––
DEFW W 0

;DW 13: time OM20
;––––––––––––––––
DEFW W 0

;DW 14: timer OM21
;––––––––––––––––
DEFW W 0

;DW 15: time OM22
;––––––––––––––––
DEFW W 0

;DW 16: time OM23
;––––––––––––––––
DEFW W 0

;DW 17: time OM24
;––––––––––––––––
DEFW W 0

;DW 18: time OM25
;––––––––––––––––
DEFW W 0
;
;$P

;DW 19 – DW 32: empty
;––––––––––––––––––––
DEFW W 16#0000 ;DW19
DEFW W 16#0000 ;DW20
DEFW W 16#0000 ;DW21
DEFW W 16#0000 ;DW22
DEFW W 16#0000 ;DW23
DEFW W 16#0000 ;DW24
DEFW W 16#0000 ;DW25
DEFW W 16#0000 ;DW26
DEFW W 16#0000 ;DW27
DEFW W 16#0000 ;DW28
DEFW W 16#0000 ;DW29
DEFW W 16#0000 ;DW30
DEFW W 16#0000 ;DW31
DEFW W 16#0000 ;DW32

;DW 33: First residual address in data field for backup to
; static RAM (entries permitted)
;––
; Entries of 0 and 32768 possible
; 16384 = Residual from data field byte DF16384 in static RAM
; 32768 = No residual in static RAMLimit applies only to backup
; into static RAM; this areatakes precedence over the data field,
; the entire remainderof which is backed up to hard disk for
; residual storage;
;
DEFW W 0
;
;DW 34 – DW 101: empty
;��������������������
DEFW W 16#0000 ;DW34

Programming Basics5�12

1070 073 875-101 (02.04) GB

DEFW W 16#0000 ;DW35
DEFW W 16#0000 ;DW36
DEFW W 16#0000 ;DW37
DEFW W 16#0000 ;DW38
DEFW W 16#0000 ;DW39
DEFW W 16#0000 ;DW40
DEFW W 16#0000 ;DW41
DEFW W 16#0000 ;DW42
DEFW W 16#0000 ;DW43
DEFW W 16#0000 ;DW44
DEFW W 16#0000 ;DW45
DEFW W 16#0000 ;DW46
DEFW W 16#0000 ;DW47
DEFW W 16#0000 ;DW48
DEFW W 16#0000 ;DW49
DEFW W 16#0000 ;DW50
DEFW W 16#0000 ;DW51
DEFW W 16#0000 ;DW52
DEFW W 16#0000 ;DW53
DEFW W 16#0000 ;DW54
DEFW W 16#0000 ;DW55
DEFW W 16#0000 ;DW56
DEFW W 16#0000 ;DW57
DEFW W 16#0000 ;DW58
DEFW W 16#0000 ;DW59
DEFW W 16#0000 ;DW60
DEFW W 16#0000 ;DW61
DEFW W 16#0000 ;DW62
DEFW W 16#0000 ;DW63
DEFW W 16#0000 ;DW64
DEFW W 16#0000 ;DW65
DEFW W 16#0000 ;DW66
DEFW W 16#0000 ;DW67
DEFW W 16#0000 ;DW68
DEFW W 16#0000 ;DW69
DEFW W 16#0000 ;DW70
DEFW W 16#0000 ;DW71
DEFW W 16#0000 ;DW72
DEFW W 16#0000 ;DW73
DEFW W 16#0000 ;DW74
DEFW W 16#0000 ;DW75
DEFW W 16#0000 ;DW76
DEFW W 16#0000 ;DW77
DEFW W 16#0000 ;DW78
DEFW W 16#0000 ;DW79
DEFW W 16#0000 ;DW80
DEFW W 16#0000 ;DW81
DEFW W 16#0000 ;DW82
DEFW W 16#0000 ;DW83
DEFW W 16#0000 ;DW84
DEFW W 16#0000 ;DW85
DEFW W 16#0000 ;DW86
DEFW W 16#0000 ;DW87
DEFW W 16#0000 ;DW88
DEFW W 16#0000 ;DW89
DEFW W 16#0000 ;DW90
DEFW W 16#0000 ;DW91
DEFW W 16#0000 ;DW92
DEFW W 16#0000 ;DW93
DEFW W 16#0000 ;DW94
DEFW W 16#0000 ;DW95
DEFW W 16#0000 ;DW96

;DW 97: MTB1 and MTB2 allocation (entries permitted)
;–––
; Entry 0 = DO NOT execute function
; Entry 1 = Execute function

Programming Basics 5�13

1070 073 875-101 (02.04) GB

;
; If the CAN processing is blocked then the
; MTB1/MTB2 processing will not be carried out!
;
DEFW W 2#0000000000100101
; *********||*||*| *: not used
; || || +–––––– CAN processing
; || |+–––––––– MTB1 processing
; || +––––––––– MTB2 processing
; |+––––––––––– CAN actual assignment
; +–––––––––––– Suppress CAN error/warning
;
;DW 98: reserved
;–––––––––––––––––
DEFW W 16#0000
;
;
;DW 99: Start address of MTB1 information in the marker area
;–––
;(entries permitted)
; The MTB1 data occupy 20 successive bytes in the
; marker area:
; Meaning: 16 bytes input data
; 4 bytes output data
; The function must be enabled in DW 97.
; Entries from K0D to K6124D (M0 to M6124) are possible.
;
DEFW W 6100

;DW 100: Start address of MTB2 information in the marker area
;––
;(entries permitted)
; The MTB2 data occupy 20 successive bytes in the
; marker area:
; Meaning: 16 bytes input data
; 4 bytes output data
; The function must be enabled in DW 97.
; Entries from K0D to K6124D (M0 to M6124) are possible.
;
DEFW W 16#0000
;
;DW 101: Start address of the CAN actual assignment in the marker area
;––
; ;(entries permitted)
; The CAN actual assignment takes up 2 bytes in the marker area
; and contains the following information:
;
; 0000000000000000B
; ************||** *: not used
; ||
; |+–––––––– MTB 1 recognized
; +––––––––– MTB 2 recognized
;
;The function must be enabled in DW 97.
; Entries from K0D to K6124D (M0 to M6124) are possible.
DEFW W 6122
;$P
;
; !!! Internal system memory data !!!
; ===
;
;The following default settings must not be changed.
; ===
;Default value for data words DW 102 – DW 127 = 16#0000
;��
DEFW W 16#0000 ;DW102

Programming Basics5�14

1070 073 875-101 (02.04) GB

DEFW W 16#0000 ;DW103
DEFW W 16#0000 ;DW104
DEFW W 16#0000 ;DW105
DEFW W 16#0000 ;DW106
DEFW W 16#0000 ;DW107
DEFW W 16#0000 ;DW108
DEFW W 16#0000 ;DW109
DEFW W 16#0000 ;DW110
DEFW W 16#0000 ;DW111
DEFW W 16#0000 ;DW112
DEFW W 16#0000 ;DW113
DEFW W 16#0000 ;DW114
DEFW W 16#0000 ;DW115
DEFW W 16#0000 ;DW116
DEFW W 16#0000 ;DW117
DEFW W 16#0000 ;DW118
DEFW W 16#0000 ;DW119
DEFW W 16#0000 ;DW120
DEFW W 16#0000 ;DW121
DEFW W 16#0000 ;DW122
DEFW W 16#0000 ;DW123
DEFW W 16#0000 ;DW124
DEFW W 16#0000 ;DW125
DEFW W 16#0000 ;DW126
DEFW W 16#0000 ;DW127
DEFW W 16#0000 ;DW128

;**
EM

5.8 Module reference list

The module reference list comprises a Table of Contents listing the modules
integrated in the PLC program. The list contains information about module
existence, module size and module start address.

To extract this data, special instructions are available for the user.

. The instructions used to verify module existence, module size and mo-
dule start address of OMs and PMs can be used only with the WinSPS
v3.0 and higher.

Programming Basics 5�15

1070 073 875-101 (02.04) GB

5.9 Module existence

Example:

; Check module existence
;–––––––––––––––––––––––––
; Checks whether the modules OM8, DM8, and FC8.
; exist

; direct addressing
U OM8 ; OM8 exist?
U DM8 ; DM8 exist?
U PM8 ; PM8 exist?
; indirect addressing
L D 8,A ; load module no. in register A
U OM[A]; OM8 exist?
U DM[A]; DM8 exist?
U PM[A]; PM8 exist?

5.10 Module size

Example:; read module size
;–––––––––––––––––––––
; Extracts module lengths of modules OM8, DM8, and PM8.

; direct addressing
L D OM8,A; size of OM8 in reg. A
L D DM8,A; size of DM8 in reg. A
L D PM8,A; size of PM8 in reg. A
; indirect addressing
L D 8,A ; load module no. in register A
L D OM[A],B ; size of OM8 in reg. B
L D DM[A],B ; size of DM8 in reg. B
L D PM[A],B ; size of PM8 in reg. B

Programming Basics5�16

1070 073 875-101 (02.04) GB

5.11 Module start address

Example:
; Read module start address
;––––––––––––––––––––––––––––
; Extracts module start addresses for modules OM8, DM8, and
PM8.
; direct addressing
L D &OM8,A ; start address of the OM8 in reg. A
L D &DM8,A ; start address of the DM8 in reg. A
L D &PM8,A ; start address of the PM8 in reg. A

; indirect addressing
L D 8,A ; load module no. in register A
L D &OM[A],B ; start address of the OM8 in reg. B
L D &DM[A],B ; start address of the DM8 in reg. B
L D &PM[A],B ; start address of the PM8 in reg. B

5.12 Module header

The module header contains information about the following:
D Module start address
D Module size
D Module version number, generated by the WinSPS module header editor
D Length of module name (currently = max. 8)
D Module name in string notation.

The user can employ a special instruction to evaluate this data. The function
of this instruction is explained in the following example.

. The commands for checking module headers are available from the
WinSPS version onwards.

Example:

; Write module header contents on marker
;–––
; 20 bytes of the FC100 module header shall be stored
;from marker M20 onwards.
;
; Number of bytes to be read must be in register C.L D 20,C

; Writing 20 bytes of header information onto an operand.
; The start address of the operand must be a multiple
; of 4 due to the double–word processing.
FC D FC100,M20 ; store 20 byte header contents of the FC100
from M20
; 4 bytes (M20–M23): Start address
; 4 bytes (M24–M27): Size in bytes
; 2 bytes (M28+M29): Version no. from header
; 1 byte (M30): Length n of module name
; 8+1byte (M31–M39): Module name string with
; ’\0’ at the end.
; 2 bytes : PXL/PXO code:
; 1 = secret
; 0 = not secret

Programming Basics 5�17

1070 073 875-101 (02.04) GB

The user can utilize this command sequence to read the module header in-
formation of OMs, PMs and DMs. It should be noted that DMs do not feature
version identifiers in the module header, i.e., the respective bytes have a
content = 0.

5.13 OM9 error module

This module is invoked once only in the event that a program error is noted
that would normally cause an immediate stop of the central processing con-
trol unit. To serve the intended purpose, it must be integrated into the PLC
program.

The triggering criteria are defined errors that can be interpreted by setting a
special marker bit in SM14 / SM15 and in SM28 / SM29.

Upon calling the OM9, the cycle time monitoring function is restarted with the
defined value (definition in OM2 or default value of 1.5 sec). While the mo-
dule is being processed, countermeasures for possible error occurrences
can be programmed.

For example, certain data, including the special error markers, can be
moved to non-volatile areas.

Once the OM9 error module has been processed, the PLC enters STOP
mode.

5.14 Fixation

The PLC provides the option to fix operands.

In contrast to the �Control� programming device function, this option can be
used to fix operands permanently to specific bit statuses or values.

Operands suitable for fixation:
D Inputs
D Outputs
D Markers

Residuals of fixation
An existing fixation is retained in the following cases:
D Always after a STOP/RUN change in operating mode.
D After a new load.
D Always after a Power-Off/On cycle.

Programming Basics5�18

1070 073 875-101 (02.04) GB

5.15 Parameterized Modules

When a program module is called up, up to 63 parameter values can be
transferred. The number of parameters transferred is specified in the mo-
dule call-up command. Then the parameters follow, starting with P0.

Example of parameter transfer

DEF E0.0,-Start
DEF M0,-Target value
DEF M2,-Actual value
DEF A0.0,-Target_actual
DEF A0.0,-No result

;
BA –TARGET_ACTUAL,5
;
; +––––––––––––––––––––+
P0 –Start ; | BOOL VAR_INPUT | Signal for function start
P1 W –Target value ; | WORD VAR_IN_OUT | expected number
P2 W –Actual value ; | WORD VAR_INPUT | actual number
P3 –Target_actual ; | BOOL VAR_IN_OUT | target value reached
P4 –No result ; | BOOL VAR_OUTPUT | no valid reading
; +––––––––––––––––––––+

Utilization of parameters in called�up module:

+–––+!Parameter
header
+–––+
 P0 BOOL Start VAR_INPUT Signal for function start
 P1 WORD Target value VAR_IN_OUT expected number
 P2 WORD Actual value VAR_INPUT actual number
 P3 BOOL Target_actual VAR_IN_OUT target value reached
 P4 BOOL no result VAR_OUTPUT no valid reading

+ ––+
! Program module file
+ ––+
 ; Compare values
1 U –Start P0 Signal for function start
2 SPI no comparison
3 L W –Target value,A P1 expected number
4 VGLA W –Actual value,A P2 actual number
5 U Z ; Result=0 ––> values are equal
6 = –Target_actual P3 target value reached
7 R –No result P4 no valid reading
 no comparison:
 ; Delete compare result
8 UN –Start P0 Signal for function start
9 R –Target_actual P3 target value reached
10 S –No result P4 no valid reading

11 EM

Programming Basics 5�19

1070 073 875-101 (02.04) GB

5.16 Time-controlled program processing

iPCL provides the option of time-controlled program processing.

. For time-controlled processing 8 timer OMs are provided that interrupt
the program at predefined intervals to activate one of these modules.
The timer resolution (matrix) is defined in the OM2.

A timer OM is called up if:
1. The designated time interval has expired and
2. a change of module has been reached.

Defined module changes are an executed module call, as well as an end of
module. Neither a DM call-up nor an EP instruction is considered a change of
module.Within the group of timer interrupts, the highest priority is given to the
interrupt that is assigned to the lowest OM number.

OM18 = highest priority, OM25 = lowest priority

. Because some programs utilize the register contents across module
boundaries (e.g., MADAP with the KETTEPCL program module), the
register contents should always be backed up upon entry into a timer
OM, and again updated prior to the end of module (PUSH/POP).

Commands for handling
timer interrupts

The time-controlled interrupts (TI) are assigned an interrupt mask. This
mask can be read and written to with the use of the TIM and LIM instructions,
respectively. Each possible timer interrupt corresponds to one bit in this
mask. When a bit is set, this means that the respective interrupt has been
enabled; when the bit is not set, the interrupt is disabled.
To perform the actual enabling of the interrupts declared in the mask, the
additional instruction EAI (Enable All Interrupts) must be issued. A general
disabling of the interrupts without influencing the mask is accomplished with
the DAI (Disable All Interrupts) instruction.
Incoming interrupts cause an entry in the corresponding interrupt register
even in cases where the respective interrupts have been masked. Here
again, a bit is assigned to each timer interrupt.
If the interrupt is executable, i.e. enabled, calling the interrupt OM automati-
cally deletes the bit in the interrupt register.
When the interrupt is disabled, the bit remains in the register, and the inter-
rupt awaits its being enabled.
The interrupt register can be loaded using the LAI (Load All Interrupts) in-
struction, and active interrupts can be deleted with the RAI (Reset All Inter-
rupts) instruction.
A change of operating mode, i.e. STOP/RUN or Power-Off/On, deletes all
active interrupts.
By default, all time controlled interrupts are enabled.
During the startup procedure, i.e. processing of OM5 and OM7, all interrupts
remain disabled.

Programming Basics5�20

1070 073 875-101 (02.04) GB

5.17 Application stack

The application stack (AST) comprises a pushdown-pop-up memory stack
with a storage depth of 256 double words, using FILO (first-in-last-out) pro-
cessing.

The PUSH and POP instructions facilitate a word-by-word data transfer be-
tween the registers and the contents of the application stack.

Example:
PUSH A ;Shift contents of register A to applic. stack
PUSH B ;Shift contents of register B to applic. stack
PUSH C ;Shift contents of register C to applic. stack
PUSH D ;Shift contents of register D to applic. stack

POP D ;Load uppermost value from applic.stack into Reg.D
POP C ;Load uppermost value from applic.stack into Reg.C
POP B ;Load uppermost value from applic.stack into Reg.B
POP A ;Load uppermost value from applic.stack into Reg.A

In the event of an application stack underflow, special marker bit S28.4 will
be set to ON.

In the case of an application stack overflow, special marker bit S28.5 will be
set to ON. Both application stack (AST) underflow and overflow conditions
will cause the central processing module to enter STOP mode, returning an
error message indicating the cause of the error.

The application stack is flushed after each EP!

iPCL addressing 6�1

1070 073 875-101 (02.04) GB

6 iPCL addressing

6.1 Operand & module identifiers, module list

Abbrev. Indexed Operand Access / Data width Image update

A, B, C, D General computingre-
gisters

Bit, byte, word, double word, REAL,LREAL

I I[R] Input Image/Bit, byte, word, double word,
REAL,LREAL

I/O state

O O[R] Output Image/Bit, byte, word, double word,
REAL,LREAL

I/O state

M M[R] Markers Bit, byte, word, double word, REAL,
LongREAL

SM SM[R] Special marker Bit, byte, word, double word, REAL,
LongREAL

T T[R] Timer Bit (status), word (value)

Z Z[R] Counters Bit (status), word (value)

D

DX

D[R]

DX[R]

Data word, 1st current
DM

Bit, byte, word, double word, REAL,LREAL

DX DX[R]
Data word, 2nd cur-
rent DM

DM DM[R] Data buffer Bit, byte, word, double word, REAL,LREAL

DF DF[R] Data field Bit, byte, word, double word, REAL,LREAL

S S[R] System data range Bit, byte, word, REAL, LREAL

P P[R] Parameter Bit, byte, word, double word

FI FIFO Max. 512 bytes

TI Time-controlled inter-
rupt

b#www Constants Bit, byte, word, double word, REAL,LREAL

DM DM[R] Data module CM DMnn ; calls 1st DM

PM PM[R] Program module BX DMnn ; calls 2nd DM

In the above enumeration, �R� is replaced by the register IDs �A�, �B�, �C� or �D�.

Module list
iPCL manages the following modules:

Name Function Comment

OM1 Cyclical program processing

OM2 Initialisation table Refer to Section 5.7 �Initialisation Table�

OM5 Startup module after Power-ON

OM7 Startup module after STOP/RUN

OM8 Shutdown module

OM18�OM25 Time-controlled modules Matrix agreement in the OM2 or S18 � S32,
lowest module no. = highest priority

OM42 � OM63 reserved

PM0 � PM1023 Program modules

DM0 � DM1023 Data modules

iPCL addressing6�2

1070 073 875-101 (02.04) GB

6.2 Assignments in the special marker area

The iPCL features a special marker area with a size of 16-words i.e. SM0
through SM30. It contains essential information regarding system flags and
PLC cycle time.

The unused addresses are reserved for internal system functions, and must
not be changed.

Address Contents Comment

SM14 PLC program and system error messages:
Hex
12 Cycle time error

16 Module stack overflow

17 Application stack overflow

18 Application stack underflow

19 DM too short

1A Operation code error

1B Parameter error

1C Parameter not found

1D Address error, access to invalid address, e.g.
transfer to constant or timer or actual counter
value.

1E Not available PB called up

1F Not available DM called up

20 Halt command

21 Controller in STOP

22 Hardware error

23 �C� application error

24 �C� application warning

25 Re-entrant module call

26 Assignment list error

27 No PLC program

28 Error in call for peripheral driver

29 Error in installation of peripheral driver

2B Not available Interr. OM

2C Instruction not yet integrated

2D Error in indirect jump

2E Wrong operand number

2F DM not active

30 Illegal DM size

31 Non-reproducible error

41 System software error

SM16

SM18

iPCL addressing 6�3

1070 073 875-101 (02.04) GB

Address CommentContents

SM20 Bit
20.0
20.1
20.2
20.3
20.4
20.5

20.6
20.7

Trigger pulse upon each startup
Buffer failure
Flashing marker
Outputs disabled
Fixation active
Data backup error

Cold start flag
Trigger pulse after power ON or load

Read-only for entire bit field

= 1, SNCI4: Memory fields to static RAM

= 1, PNC: Memory fields of the residual
data on the hard disk

SM22 Actual cycle time of last complete cycle Read-only

SM24 Maximum measured cycle time

SM26 Minimum measured cycle time

SM28 Error
word 1
28.0
28.1
28.2
28.3
28.4
28.5
28.6
28.7

Addressing error
Parameter error
Non-existent module called
Module stack error
AST underflow
AST overflow

All errors are read-only

SM29 Error
word 1
29.0
29.1
29.2
29.3
29.4
29.5
29.6
29.7

Opcode error

No DM active
Group error message
Cycle time error

For detailed information, refer to SM14.

SM30 Auxiliary
marker
word
30.0
30.1
30.2
30.3
30.4
30.5
30.6
30.7

Always 0

All errors are read-only

SM31 Auxiliary
marker
word
31.0
31.1
31.2
31.3
31.4
31.5
31.6
31.7

Logical greater flag
Always 1

Carry flag, logical less when 1
Zero flag, logical equal when 1

Influenced only by CPL instruction

Influenced only by CPL instruction
Influenced only by CPL instruction

iPCL addressing6�4

1070 073 875-101 (02.04) GB

6.3 System area assignment

iPCL features a system area with a size of 512 bytes i.e. S0 through S511. It
contains the system configuration data for the respective controller. Essen-
tial declarations made in OM2 are copied into the system area, and can thus
be read by the PLC program.

To the extent deemed useful, the system declarations may be changed at
runtime. This also includes the time intervals of time-controlled organization
modules.

Segments of the system area are used by default function modules which
make data available that is also used by other PLC program parts.

Example: Date and time.

The unassigned addresses in the system area are reserved for internal pur-
poses, and must not be modified.

Address Contents Comment

S0 Initialisation flags like OM2_DW2 Writing in OM5 / OM7

S2 System settings like OM2_DW3

S4 Error reaction like OM2_DW4 Writing in OM5 / OM7

S6 Maximum cycle time like OM2_DW5 Writing in OM5 / OM7

S8 DM to be copied like OM2_DW6 Read-only

S10 First residual time like OM2_DW7 Writing in OM5 / OM7

S12 First residual counter like OM2_DW8 Writing in OM5 / OM7

S14 First residual marker address like OM2_DW9 Writing in OM5 / OM7

S16 First residual data buffer address like OM2_DW10 Writing in OM5 / OM7

S18 Time interval OM18 like OM2_DW11 Transfer during startup and
EP ibl i i S20 Time interval OM19 like OM2_DW12

g p
EP, possibly active timer must
expire before new matrix is ac-

S22 Time interval OM20 like OM2_DW13
expire before new matrix is ac-
tivated.

S24 Time interval OM21 like OM2_DW14
tivated.

S26 Time interval OM22 like OM2_DW15

S28 Time interval OM23 like OM2_DW16

S30 Time interval OM24 like OM2_DW17

S32 Time interval OM25 like OM2_DW18

S62 First residual data field address like OM2_DW33

S64 Current processing time, in microseconds Program run time OM1 start
through I/O state end.

S66 Current processing time, in milliseconds

S68 Max. processing time, in microseconds

S70 Max. processing time, in milliseconds

S72 Min. processing time, in microseconds

S74 Min. processing time, in milliseconds

S76 Min. processing time, in microseconds RUN = READY contact closed

S100 Real-time: Minutes / seconds Read-only

S102 Day/ hours

y

Entry from operating system
S SS104 Year / month

y o ope a g sys e
0=So, 1= Mo,... , 6=Sa

S106 ----- Week day :

iPCL addressing 6�5

1070 073 875-101 (02.04) GB

Address CommentContents

S114 Periphery status See Section Periphery status

S116 Residual status See Section iPCL startup char-
acteristics

S124 I size I/O information

S126 O size SNCI4: 0.5 KbytesPNC 8
Kbytes

S128 Hardware / software version

S151 Field bus type DCIO PROFIBUS-DP
(with SNCI4)

S152 Field bus type PNC PROFIBUS-DP
(with PNC)

S240
..
S255

PROFIBUS-DP slave diagnostics
BTN 15 0
....
BTN 127 112

Bit state:
0 = Slave working error free
1 = Slave reports diagnostics
(cannot be contacted or re-
ports an error)

S510

iPCL addressing6�6

1070 073 875-101 (02.04) GB

6.4 Periphery status

The periphery status word S114 provides an overview of the status of the bus
master; it has the following format:

Bit Description

0 BMF Bus master error

1 KSD Classified slave diagnostics: The KSD bit in the DP status
word is the OR link of bits 8 to 13. The individual error types
of the KSD are shown in bits 8 to 13 of the DP status word.

2 SD System diagnostics: The DP standard differentiates between
system diagnostics and slave diagnostics. System diagnos-
tics comprise a bit field that indicates which slaves report
diagnostics. In addition, there is a detailed diagnostic routine
for individual slaves, the slave diagnostics.The SD bit in the
DP status word represents the OR link of all system diagnos-
tic bits. Therefore, when SD = 1, at least one slave reports
diagnostics.

3 Reserved

4 Init Init phase: Waiting until periphery is ready for operations, or
until iPLC STOP time has elapsed.

5 BmClab Bus master has switched DP bus to CLEAR status: BmClab =
[SNE v SKF v SNB] & Error_Action_Flag = 1. The point in
time for the restart after discontinuation of the BmClab causes
can be controlled from the PLC program.

6 PgStop Programming unit keeps DP bus in STOP state.

7 Active Active ID: This bit must always be 1. If that is not the case,
then there is a fatal error in the bus master software.

8 SNE One or more slaves are not reachable on the bus.

9 SKF One or more slaves report configuration errors.

10 DPS One or more slaves report static diagnostics.

11 EXD One or more slaves report extended diagnostics.

12 SNB One or more slaves not ready for cyclical data exchange.

13 SF One or more slaves report error of another type.

14 Reserved

15 Reserved

The bits Init, BmClab, PgStop are not relevant to the PLC program be-
cause, in the RUN state of the iPCL, they always have the value 0..

Bus master error (BMF)
This bit indicates that a bus master error has been detected.

KSD � Classified Slave Diagnostics
The KSD bit in the DP status word is the OR link of bits 8 to 13. The individual
error types of the KSD are shown in bits 8 to 13 of the DP status word.

iPCL addressing 6�7

1070 073 875-101 (02.04) GB

System diagnostics in accordance with DP standards (SD)
The DP standard differentiates between system diagnostics and slave diag-
nostics. System diagnostics comprise a bit field that indicates which slaves
report diagnostics. In addition, there is a detailed diagnostic routine for indi-
vidual slaves, the slave diagnostics.
The SD bit in the DP status word represents the OR link of all system diag-
nostic bits. Therefore, when SD = 1, at least one slave reports diagnostics.

Active ID
This bit must always be 1. If that is not the case then there is a fatal error in the
bus master software.

6.5 Data formats

Bit, byte, word and double word can all be specified as data formats . In the
addressing differentiation is made between:
D Load instruction
D Transfer instruction

Bit

High word Low word

High byte Low byte High byte Low byte

31 24 23 16 15 8 7 3 0

Byte = B

High word Low word

High byte Low byte High byte Low byte
31 24 23 16 15 8 7 0

On loading, the source operand may be either the even-numbered (LOW)
byte or the odd-numbered (HIGH) byte. In the case of the destination oper-
and (register), the LOW byte is always addressed.

Example: Load command (byte): M1

L B M1,A

M1

High byte Low byte

Register A

High word Low word

High byte Low byte High byte Low byte

iPCL addressing6�8

1070 073 875-101 (02.04) GB

Example: Load command (byte): M2

L B M2,A

M2

High byte Low byte

Register A

High word Low word

High byte Low byte High byte Low byte

On transfer the LOW byte is addressed in the source operand (register). The
destination operand may be either the even-numbered (LOW) byte or the
odd-numbered (HIGH) byte.

Example: Transfer command (word): M1

T B A,M1

Register A

High word Low word

High byte Low byte High byte Low byte

M1

High byte Low byte

Example: Transfer command (word): M2

T B A,M2

Register A

High word Low word

High byte Low byte High byte Low byte

M2

High byte Low byte

Word = W

High word Low word

High byte Low byte High byte Low byte
31 24 23 16 15 8 7 0

An even-numbered or odd-numbered byte address may be specified for
word processing during the load or transfer instructions.

iPCL addressing 6�9

1070 073 875-101 (02.04) GB

Without exception, for the load instruction, the specified byte and the subse-
quent byte are loaded into the LOW word of the register (32-bit); the HIGH
word of the register remains unchanged.

Without exception, for the transfer instruction, the specified byte and the
subsequent byte are written from the LOW word of the register (32-bit).

Example: Load command (word): M2

L W M2,A

M2

High byte Low byte

Register A

High word Low word

High byte Low byte High byte Low byte

Double word = D

High word Low word

High byte Low byte High byte Low byte
31 24 23 16 15 8 7 0

Loading always requires the base byte and the following 3 bytes to be
loaded into the specified register (32-bit).

Transferring always requires the specified register (32-bit) to be written to
the base byte and the following 3 bytes.

Example: Load command (double word): M4

L D M4,A

M4

High byte Low byte High byte Low byte

Register A

High word Low word

High byte Low byte High byte Low byte

iPCL addressing6�10

1070 073 875-101 (02.04) GB

Example: Transfer command (double word): M4

T D A,M4

Register A

High word Low word

High byte Low byte High byte Low byte

M4

High byte Low byte High byte Low byte

Example: Transfer command (double word): M3

Error in the PG.

L D 3,C

T D A,M[C]

Register A

High word Low word

High byte Low byte High byte Low byte

M3

High byte Low byte High byte Low byte

iPCL addressing 6�11

1070 073 875-101 (02.04) GB

6.6 Register structure

The controller features 4 working registers, which can be addressed in a bit-
wise, byte-wise, word-by-word or double word fashion. In this context, it
should be noted that byte/word addressing always addresses the LOW-
byte/word.

Working registers A, B, C, D
31 24 23 16 15 8 7 0

High word Low word

High byte Low byte High byte Low byte

For operations that exceed the 32-bit format, the registers are combined to
form permanent register pairs.

Working register pair A + B
31 24 23 16 15 8 7 0

Word 4 = HIGH word B Word 3 = LOW word B

Word 2 = HIGH word A Word 1 = LOW word A

Working register pair C + D
31 24 23 16 15 8 7 0

Word 4 = HIGH word D Word 3 = LOW word D

Word 2 = HIGH word C Word 1 = LOW word C

Status bits

Zero
Carry

 Overflow

Negative

N O C Z

iPCL addressing6�12

1070 073 875-101 (02.04) GB

6.7 Representation of constants

Data type PLC service program WinSPS

Description Representation

p g

UINT (unsigned integer) Binary / dual, word 2#00000000_00000000 to 2#11111111_11111111

Decimal, wordDouble
word

0 to 655350
0 to 4294967295

Hexadecimal, wordDouble
word

16#0000 to 16#FFFF
16#00000000 to 16#FFFFFFFF

INT (signed integer) Decimal, wordDouble
word

�32768 to +32767
�2147483648 to +2147483647

Floating point REAL
LREAL

Double word
Quadword

1.175494351e�38 to 3.402823466e+38

2.2250738585072014e�308 to 1.7976931348623158e+308

Text, STRING(2) ASCII, word double word �AB�
�ABCD�

Time value TVALUE Time value (+time base
r)r:
0 = 10 ms, 1 = 100 ms,
2 = 1 s, 3 = 10 s

T#10 ms to T#10230 s
T#0.r to T#1023.r

TCP/IP addresses, ISTRING Double word �1.2.3.4�

6.8 Program module calls

PLC service program WinSPS

Program module / function call (IEC1131/3) CM PM

6.9 Jump instructions

PLC service program WinSPS

Jump instruction JPx label

Jump destination label

iPCL addressing 6�13

1070 073 875-101 (02.04) GB

6.10 Bit- and module addresses

Operand Addresses (decimal)

I 0.0 to 8191.7

O 0.0 to 8191.7

M 0.0 to 8191.7

SM 0.0 to 31.7

D 0.0 to 511.7

DX 0.0 to 511.7

DM 0.0 to 511.7

DF 0.0 to 32767.7

T-state 0 to 256

Z-state 0 to 256

P 0 to 62

DM 0 to 1023

PM 0 to 1023

6.11 Byte addresses

Operand Address (decimal) Comment

I 0 to 8191

O 0 to 8191

T-act. val.
T-state

0 to 256
0 to 256

Timer range 10 ms to 1023 s; (Matrix: 0.01;
0.1; 1; 10 s)

Z-act. val.
Z-state

0 to 256
0 to 256

Counter range: 0 to 8191

M 0 to 8191

S 0 to 511 Managed values:
D System clock

D Error codes

D Times of time-controlled processing

D Versions, etc.
P 0 to 62

DF 0 to 32767

DM 0 to 511

D 0 to 511

DX 0 to 511

The even-numbered byte addresses are used as word addresses. For
double word addresses the byte addresses have to be divisible by four.

iPCL addressing6�14

1070 073 875-101 (02.04) GB

6.12 Addressing modes

6.12.1 Absolute addressable operands

reading
Byte, word, double word,
REAL, LREAL

E, A, M, T, Z and P
const., DF, DP, D, DX,
SM, S

for T/C, actual values
apply

writing:
Byte,word,double word,
REAL, LREAL

A, M, P, DF, DP, D, DX, S P writing, depending on
assigned operand

6.12.2 Direct addressing of all absolute addressable operands

Examples:

L B E10,B ; Load the state of the
; input book E10 in
; the low byte of the
; low word of B

L W 100,C ; Load the value 100 in the
; low word of the
; register C

6.12.3 Register-to-register addressing

Example:

L W C,B ; Load the contents of the low word
; of register C
; into the low word of
; register B

iPCL addressing 6�15

1070 073 875-101 (02.04) GB

6.12.4 Register indirect addressing

Examples
L D 10,A ; Load indices as

; byte number low word
; from A, high word
; is deleted

L W E[A],D ; Load the state of E10
; (address in A) into the
; low word of register D

; load

. When employed as index register 32 bits are always used.

iPCL addressing6�16

1070 073 875-101 (02.04) GB

6.12.5 iPCL indirect addressing

Indirect addressing, whether word/byte or bit-oriented, is accomplished with
the use of an operand prefix containing the operand identifier (operand ID)
and operand address. This greatly facilitates the handling and monitoring of
operand addresses.

In addition, all data and program modules can be called indirectly.

The operand prefix is structured as follows:

OPD[R] OPD = Operand ID
[R] = Operand address (index address) in the registers A, B, C,

D

. When loading index addresses into one of the registers, double word D
must always be used as a supplement because the registers are 32 bits
wide, and the HIGH word must be deleted!

Principle of indirect addressing, using the example of a block transfer via
program loop:

Task to be accomplished:

Transfer of 5 input words starting at address I10 into marker words from ad-
dress M50 upward.

L W 5,A ; Load the loop counter
L D 10,B ; Load the base byte address I10
L D 50,C ; Load the base byte address M50
Continue: ; Loop entry label
L W E[B],D ; Load contents

; (Operand state)
T W D,M[C] ; Write state that was loaded
INC D B,2 ; Next I-word (byte addr. + 2)
INC D C,2 ; Next M-word
DEC D A,1 ; Loop counter –1
SPN continue ; Not all words processed yet

iPCL addressing 6�17

1070 073 875-101 (02.04) GB

Indirect byte addresses

OPD-ID Byte address
(dec.)

Instructions
[Reg]

Examples

I 0 to 8191 L L D 10,A

O 0 to 8191 L, T L W OPD[A],B

T-act. val. 0 to 255 L

Z-act. val. 0 to 255 L L D 10,A

M 0 to 8191 L, T T W B,OPD[A]

P 0 to 62 L

S 0 to 511 L, T

SM 0 to 31 L, T

DF 0 to 32767 L, T

DM 0 to 511 L, T

D 0 to 511 L, T

DX 0 to 511 L, T

In order to address the next byte or next T/C the address needs to be in-
cremented by 1. In order to address the next word the address needs to be
incremented by 2.

Indirect bit addresses

OPD-ID Byte ad-
dress (dec.)

Instructions For examples of OPD
see column 1

I 0 to 65455 A, AN, O, ON

O 0 to 65455 A, AN, O, ON, S, R, = L D 10,AU OPD[A]

M 0 to 65455 A, AN, O, ON, S, R, = = OPD[A]

S 0 to 4095 A, AN, O, ON

SM 0 to 255 A, AN, O, ON

D 0 to 4095 A, AN, O, ON, S, R, =

DX 0 to 4095 A, AN, O, ON, S, R, =

DM 0 to 4095 A, AN, O, ON, S, R, =

DF 0 to 262143 A, AN, O, ON, S, R, =

T-state 0 to 255 A, AN, O, ON

Z-state 0 to 255 A, AN, O, ON

To address the next bit relative to a given starting address, this address must
be incremented by 1.

Indirect module addresses

Operand Module number Instructions
[Reg]

Example

DM 0 to 1023 CMx

BXx

L D 10,A

CM DM[A]

PM 0 to 1023 CMx

CMx

L D 100,A

CM PM[A]

To address the next module relative to a given module number, it must be
incremented by 1.

In the case of a range violation or if the module is not available, the controller
will enter STOP mode. In both instances, the cause of the error can be indi-
cated by the Programming Unit (PG).

iPCL addressing6�18

1070 073 875-101 (02.04) GB

6.13 Parameter transfer

When a program module is called up, up to 63 parameters can be trans-
ferred. The number of parameters transferred is specified in the module
call-up command. Then the parameters follow, starting with P0. In a PM that
has been called, these parameters can also be processed indirectly: (L D
P[R],R).

. The indirect processing of parameters is only possible from WinSPS
version 3.0 onwards.

The applicable operand attributes are listed below:
D D � double word (default)
D W � word
D B � byte

Bit operands are programmed without the use of attributes.

. Timers and counters are transferred without operand attributes to fa-
cilitate their use as both word (i.e. timer / counter values) and as bit (i.e.
timer / counter status) in the module to be called.

Example: Parameter transfer

CM PM100,7 ; Call PM100 using 7 parameters
P0 D 43 ;Parameter P0: PM no. as constant 43
P1 D 4 ;Parameter P1: DM no. as constant K4
P2 W O56 ;Parameter P2: Ouput word at byte addr. O56
P3 I7.3 ;Parameter P3: Input bit I7.3
P4 T2 ;Parameter P4: Timer T2
P5 C13 ;Parameter P5: Counter C13
P6 O10.0 ;Parameter P6: Output bit O10.0

Utilization of parameters in called-up module PM100:

L D P1,A ;Load data module no. 4
CM DM[A] ;Open DM4
BX –DB5

L D P0,A ;Load PM no. 43
CM PB[A]0.2 ;Use 2 parameters to call PM43
P0 D 43 ;Parameter P0: D2 of active 1st DM (DM4)
P1 D 4 ;Parameter P1: DX6 of active 2nd DM (DM5)

L W P2,A ;Load output word O56

L W P4,B ;Load timer value from T2 to B

U P3 ;E7.3
A P4 ;Status of T2
A P5 ;Status of C13
= P6 ;O10.0

iPCL addressing 6�19

1070 073 875-101 (02.04) GB

6.14 Addressing limits

Direct addressing
In direct addressing, addressing limits are determined by the operand at-
tribute.

Byte Address as desired

Word Address even-numbered

Double word Address divisible by 4

REAL Address divisible by 4

LREAL Address divisible by 8

Example:

Operand B W D R L

M0 x x x x x

M1 x

M2 x x

M3 x

M4 x x x x

M5 x

M6 x x

M7 x

M8 x x x x x

Indirect addressing
Example:
L D 0,A ;Address byte 0
L D M[A],B ;State of M0+M1+M2+M3 is read
INC D A,1 ;Address byte 1
L D M[A],B ;State of M1+M2+M3+M4 is read
INC D A,1 ;Address byte 2
L D M[A],B ;State of M2+M3+M4+M5 is read
INC D A,1 ;Address byte 3
L D M[A],B ;State of M3+M4+M5+M6 is read
INC D A,1 ;Address byte 4
L D M[A],B ;State of M4+M5+M6+M7 is read

Parameterized addressing
Parameterized addressing is not subject to the same addressing limits as
indirect addressing.

Example:

Parameter definition Parameter query Reads the following:

P0 M1 L B P0,A M1

P1 M3 L W P1,A M3 and M4

P2 M5 L D P2,A M5 to M8

P3 M7 L D P3,A M7 to M10

P1 M11 L L P1,A M11 to M18

iPCL addressing6�20

1070 073 875-101 (02.04) GB

Notes:

Instruction set 7�1

1070 073 875-101 (02.04) GB

7 Instruction set

7.1 Structure of controller instructions

Controller instruction Line comment

Operations
part

Operand
attribute

Source
operand

Destinatio
n operand

OPP OPA SRC , DEST ; Instruction description

Examples:

U I0.0

U W –Name , O

L B O0 , B

T D C , M12

MUL W 1234 , D

7.2 Flags

The flags are influenced by the following instruction groups:
D Bit instructions D Shift
D Compare D Rotate
D Convert D Add
D Swap D Subtract
D Increment D Multiply
D Decrement D Divide

They can be used not only in program processing instructions (jumps, mo-
dule instructions) but also in logical links (special marker queries).

Flags Display in
WinSPS

JP...
CM...

Flag query Description

CY=1

CY=0

C ...C

...CN

U

AN

CY

CY

Carry

Carry Not

O=1

O=0

O ...O

...ON

U

AN

O

O

OverflowOverflow

not

Z=1

Z=0

Z ...Z

...N

U

AN

Z

Z

Zero

Not Zero

N=1

N=0

N ...M

...P

U

AN

N

N

Negative/minus

Positive

AG=1 ...AG No flag link Arithmetical greater

AG=0 N v Z ...MZ U Z Minus / zero

O N

AN O

ON N

U O

LG=1 ...LG AN Z Logical greater

AN CY

LG=0 C v Z ...CZ U Z Carry/zero

O CY

Instruction set7�2

1070 073 875-101 (02.04) GB

7.3 Key to abbreviations

OPP Operation
OPA Operand attribute

B Byte
W Word
D Double word
R REAL
L LREAL (LongReal)

SRC Source operand
DEST Destination operand

I Input
O Output
M Markers
K Constants
SM Special marker
T Timer
Z Counters
D Data word (within data modules)
DM Data buffer
DF Data field
S System area
DM Data module
DX 2. 2nd active data module
PM Program module
SYM Symbolic
R.bit Register bit with R = A, B, C, D, and bit = 0 to

31
OPD[R] Register indirect with operand prefix
TI Time interrupt (time-controlled processing)

RG Program branch
A Operation permitted at RG beginning
E Operation concluding RG

Addr. Addressing mode
D Direct
R Register A, B, C, or D
[R] Register indirect with operand prefix

Flag State bit
V Link result RES
CY Carry
O Overflow
Z Zero
N Negative

Instruction set 7�3

1070 073 875-101 (02.04) GB

7.4 Bit instructions

Bit instructions modify the state bits C, Z, O, and N.

. Exception: Flags themselves are not changed by a binary flag query.

Links are interpreted in accordance with the Boolean �AND� before �OR�
logic principle. Parenthesized instructions are used to form logical inter-
mediate results.

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

U I/O/M/SM • • • • • • U I0.0 AND link, query status 1
T/C/SYM • • • • • • U T0

, q y

R.bit • • • • • • U A.0
OPD[R] • • • • • • U M[A]
P • • • • • • U P0
S/D/DX/DF/DP • • • • • • U D0.0
CY/Z/O/N • • U CY

AN I/O/M/SM • • • • • • AN A0.0 AND link, query status 0
T/C/SYM • • • • • • AN Z0

, q y

R.bit • • • • • • AN B0.0
OPD[R] • • • • • • AN M[B]
P • • • • • • AN P1
S/D/DX/DF/DP • • • • • • AN D0.0
CY/Z/O/N • • AN CY

O I/O/M/SM • • • • • • O M0.0 OR link, query status 1
T/C/SYM • • • • • • O �SYMBOL

, q y

R.bit • • • • • • O C0.0
OPD[R] • • • • • • O MD[C]
P • • • • • • O P10
S/D/DX/DF/DP • • • • • • O D0.0
CY/Z/O/N • • O CY

ON I/O/M/SM • • • • • • ON SM31.7 OR link, query status 0

T/C/SYM • • • • • • ON Name

, q y

R.bit • • • • • • ON D.0
OPD[R] • • • • • • ON M[D]
P • • • • • • ON P62
S/D/DX/DF/DP • • • • • • ON D0.0
CY/Z/O/N • • ON CY

= A/M/SYM • • • • • • = A0.0 Assign result when

S/D/DX/DF/DP • • • • • • = D0.0

g

RES = 1
P • • • • • • • = P0
OPD[R] • • • • • • = M[A]
R.bit • • • • • • = A.0

S A/M/SYM • • • • • • S M0.0 Set bit HIGH when RES = 1

S/D/DX/DF/DP • • • • • • S D0.0
P • • • • • • • S P1
OPD[R] • • • • • • S M[B]
R.bit • • • • • • S B0.0

Instruction set7�4

1070 073 875-101 (02.04) GB

OPP ZNOCYV[R]RDEAZ�OPDSRCOPA

R A/M/SYM • • • • • • R �SYMBOL Set bit LOW when RES = 1
S/D/DX/DF/DP • • • • • • R D0.0
P • • • • • • • R P62
OPD[R] • • • • • • R M[C]
R.bit • • • • • • R C0.0

P R.bit • • • • • P A.0 Check register bit for status = 1

if met: C = 1

PN R.bit • • • • • P A.15 Check register bit for status = 0

if met: C = 1

(• • • • (AND opening bracket
) • • • •) Closing bracket
O(• • • • O(OR opening bracket
)N • • • •)N Negation of bracket contents

7.5 Timer programming

The iPCL provides 256 timer circuits, T0 through T255.

These can be used in the following modes:
D SP Pulse
D SPE Start pulse extended
D SR Start time as raising delay
D SF Start time as falling delay
D SRE Start time as raising delay extended

Starting non-residual
timers

Starting the non-residual starting timers SP, SPE, SR and SRE requires a
positive transition of the timer start condition. However, they are also started
if at the time of first addressing (1st PLC cycle) after startup or restart the
start condition equals 1.

Residual timers
In the case of residual timers, the flank marker is retained, i.e. whether a 1
will start the timer at the time of first addressing (1st PLC cycle) after startup
or restart, depends on the start condition prior to STOP or Power-OFF.

Off-delay
In the case of the start time as falling delay, a �0� will not start the timer during
the initial processing. Predefining the timer start condition with 1 is possible
as early as in the startup OM, provided that the information about residual
characteristics (see Section on Residual characteristics) is considered.

The timers are decremented in the I/O state. A timeout is thus recognized
only in the I/O state, and not during the program cycle!

Because a timer is decremented in the I/O state by a multiple of the declared
time matrix, it is useful to select a time matrix that is a small as possible.

The timer starts immediately upon a positive transition of the timer start
condition.

Instruction set 7�5

1070 073 875-101 (02.04) GB

7.5.1 Timer instructions

Timer starts are activated only when the RES signal undergoes a transition
from 0 ↑1. In advance of the timer start, the time value is loaded into the reg-
ister being used. Reset and stop functions of timers are always RES signal-
dependent. The timer status for logical links is instruction-dependent, and
may be taken from the timer diagrams.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

SP R ,
,
,
,

Tn
SYM
T[R]
P

• •
•

•
•

 SP
 SP
 SP
 SP

A,T0
A,−Symbol
A,T[B]
A,P0

Pulse

SPE R ,
,
,
,

Tn
SYM
T[R]
P

• •
•

•
•

SPE
SPE
SPE
SPE

 A,T0
A,−Symbol
A,T[B]
A,P0

Start pulse extended

SR R ,
,
,
,

Tn
SYM
T[R]
P

• •
•

•
•

 SR
 SR
 SR
 SR

A,T0
A,−Symbol
A,T[B]
A,P0

On�delay

SF R ,
,
,
,

Tn
SYM
T[R]
P

• •
•

•
•

 SF
 SF
 SF
 SF

A,T0
A,−Symbol
A,T[B]
A,P0

Off�delay

SRE R ,
,
,
,

Tn
SYM
T[R]
P

• •
•

•
•

SRE
SRE
SRE
SRE

A,T0
A,−Symbol
A,T[B]
A,P0

Start time as raising delay
extended

RT Tn
 SYM
 T[R]
 P

• •
•

•
•

 RT
 RT
 RT
 RT

T0
−Symbol
T[B]
P0

Set timer LOW when RES =
1

TH Tn
 SYM
 T[R]
 P

• •
•

•
•

 TH
 TH
 TH
 TH

T0
−Symbol
T[B]
P0

Timer STOP when RES = 1,
timer continues when RES =
0

Instruction set7�6

1070 073 875-101 (02.04) GB

7.5.2 Time format

The following applies to the time format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x R R W W W W W W W W W W

Time-
matrix

Timer
value

1 � 1023

0 0 0: 10 ms

0 1 1: 100 ms Program
entry of time
constants:

1 0 2: 1 s w.r with time value
w = 1 �1023

1 1 3: 10 s and time matrix
r = 0 � 3

Example:

Timer T100 is to be started at 15 sec:

L W T#15s,A ;15s declaration in the CL500 1s time matrix
U B –start
SPE A,T100

Same function but with smaller time matrix, i.e. higher accuracy:

L W T#15000ms,A ;15s declaration in the CL500 100ms time
matrix
U B –start
SPE A,T100

Timer start with the assistance of the PG time matrix:

L W T#15.2,A ;15s declaration in the PG 1s time matrix
U B –start
SPE A,T100

Same function but with smaller time matrix, i.e. higher accuracy:

L W T#150.1,A ;15s declaration in the PG 100ms time matrix
U B –start
SPE A,T100

Instruction set 7�7

1070 073 875-101 (02.04) GB

7.5.3 Timer diagrams

SP � Start time as pulse

Start conditions

Reset conditions

Timer status ← →t ← →t

SPE � Start pulse extended

Start conditions

Reset conditions

Timer status ← →t ← →t ← →t ← →<t

SR � Start time as raising delay

Start conditions

Reset conditions

Timer status ← →t ← →<t

SF � Start time as falling delay

Start conditions

Reset conditions

Timer status ← →t ← →t

SRE � Start time as raising delay extended

Start conditions

Reset conditions

Timer status ← →t ← →t ← →t ← →<t

Instruction set7�8

1070 073 875-101 (02.04) GB

7.6 Counter instructions

The setting of counters and counting up and down occurs only when the RES
signal undergoes a transition from 0 -> 1.

In advance of the setting, the required counter content is loaded into the reg-
ister being used.

Counter resetting always occurs static RES signal-dependent.

The counter status for logical links depends on the counter content.

D For counter values > 0 the status = 1
D For value = 0 status = 0

The counting range is between 0 to 8191.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z
Zn R ,

,
,
,

Zn
SYM
Z[R]
P

• •
•

•
•

 SC
 SC
 SC
 SC

A,Z0
A,−Symbol
A,Z[B]
A,P0

Set counter HIGH

CU Zn
 SYM
 Z[R]
 P

• •
•

•
•

 CU
 CU
 CU
 CU

Z0
−Symbol
Z[B]
P0

Count up

CD Zn
 SYM
 Z[R]
 P

• •
•

•
•

 CD
 CD
 CD
 CD

Z0
−Symbol
Z[B]
P0

Count down

RC Zn
 SYM
 Z[R]
 P

• •
•

•
•

 RC
 RC
 RC
 RC

Z0
−Symbol
Z[B]
P0

Set counter LOW when RES =
1

Instruction set 7�9

1070 073 875-101 (02.04) GB

7.7 Digital links

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

U B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX

R
OPD[R]
P

, R •
•
•
•

•

•
•

0
0
0
0

0
0
0

0
0
0
0

0
0
0

•
•
•
•

•
•
•

•
•
•
•

•
•
•

 U
 U
 U
 U

 U
 U
 U

B
W
B
W

W
B
W

E0,A
T0,B
S0,C
D0,D

A,B
M[B],C
P0,D

Digital AND link
between source and destina�
tion.
The result is written to destina�
tion.

AN B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

0
0
0
0
0
0
0

0
0
0
0
0
0
0

•
•
•
•
•
•
•

•
•
•
•
•
•
•

AN
AN
AN
AN
AN
AN
AN

B
W
B
W
W
B
W

E127,A
T127,B
S511,C
D510,D
A,B
M[B],C
P62,D

Digital AND NOT
link between
source and destination.
The result is written to destina�
tion.

O B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

0
0
0
0
0
0
0

0
0
0
0
0
0
0

•
•
•
•
•
•
•

•
•
•
•
•
•
•

 O
 O
 O
 O
 O
 O
 O

B
W
B
W
W
B
W

E0,A
T0,B
S0,C
D0,D
A,B
M[B],C
P0,D

Digital OR link
between source and
destination.
The result is written to destina�
tion.

ON B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

0
0
0
0
0
0
0

0
0
0
0
0
0
0

•
•
•
•
•
•
•

•
•
•
•
•
•
•

ON
ON
ON
ON
ON
ON
ON

B
W
B
W
W
B
W

E127,A
T127,B
S511,C
D510,D
A,B
M[B],C
P62,D

Digital OR NOT
link between
source and destination.
The result is written to destina�
tion.

XO B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

0
0
0
0
0
0
0

0
0
0
0
0
0
0

•
•
•
•
•
•
•

•
•
•
•
•
•
•

XO
XO
XO
XO
XO
XO
XO

B
W
B
W
W
B
W

E0,A
T0,B
S0,C
D0,D
A,B
M[B],C
P0,D

EXCLUSIVE OR
link between
source and destination.
The result is written to destina�
tion.

XON B
W
D

I/O/M/SM
T/C/K/SYM
S/DP/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

0
0
0
0
0
0
0

0
0
0
0
0
0
0

•
•
•
•
•
•
•

•
•
•
•
•
•
•

XON
XON
XON
XON
XON
XON
XON

B
W
B
W
W
B
W

E127,A
T127,B
S511,C
D510,D
A,B
M[B],C
P62,D

EXCLUSIVE OR NOT
link between
source and destination.
The result is written to destina�
tion.

7.8 SWAP instructions

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

SWAP
W
D

R • SWAP
SWAP

W
D

O
O

Change in register
High byte « Low byte
High word « Low word

Instruction set7�10

1070 073 875-101 (02.04) GB

7.9 Compare instruction

The universally applicable CPLA (Compare Logical and Arithmetical) in-
struction is available for Compare operations. This facilitates both logical
and arithmetic compare operations.

For reasons of compatibility the purely logical CPL instruction was also im-
plemented; it is used to map binary result queries also in special markers.

The logical compare operation regards the bytes, words, or double words to
be compared as unsigned integers, i.e. as unsigned 8, unsigned 16, or un-
signed 32.

The arithmetical compare operation regards the bytes, words, or double
words to be compared as signed integers, i.e., as signed 8, signed 16, or
signed 32.

After a compare instruction the flags indicate the result of the compare.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z AG LG

CPLA B
W
D

I/O/M/SM
T/C/K/SYM
S/DF
D/DX/DP
R
OPD[R]
P

, R •
•
•
•
•

• • •
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

 CPLA
 CPLA
 CPLA
 CPLA
 CPLA
 CPLA
 CPLA

W
B
W
B
B
W
B

E62,A
255,B
DF510,C
D511,D
B,C
M[C],D
P62,A

Arithmetical compare function.
The result may be used for log�
ical and arithmetical purposes.

Compare vlues
Logical: positive, integer
arithm.: two’s complement,
 signed

CPL B
W
D

I/O/M/SM
T/C/K/SYM
S/DF
D/DX/DP
R
OPD[R]
P

, R •
•
•
•
•

• • •
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

 CPL
 CPL
 CPL
 CPL
 CPL
 CPL
 CPL

W
B
W
B
B
W
B

E62,A
255,B
DF510,C
D511,D
B,C
M[C],D
P62,A

Logical compare operation.
The result may be used for log�
ical purposes only,
i.e. the values will be treated
as positive integers.

CPLA compare vlues:

D Logical: positive, integer
D Arithmetical: two�s complement, signed integer

After a compare operation, the flags or special markers provide information
about the result of the compare.

Instruction set 7�11

1070 073 875-101 (02.04) GB

Examples:

Compare CPL B,A CPLA B,Ap
destination (A) with source
(B) Logical Logical Arithmetical(B)

Jump instruc-
tion

Flag query Jump instruc-
tion

Flag query Jump instruc-
tion

Equal A+B JPZ U SM31.7 JPZ U Z JPZ

Unequal A0B JPN UN SM31.7 JPN UN Z JPN

Less than AtB JPN U SM31.6 JPCY U CY JPM

Less than /
equal

AvB JPCZ UN SM31.0 JPCZ U Z
O CY

JPMZ

Greater than AuB JPLG U SM31.0 JPLG UN CY
UN Z

JPAG

Greater than /
equal

AwB JPCN UN SM31.6 JPCN UN CY SPP

. When using the CPLA instruction, the evaluation of the compare re-
sults must always be programmed immediately following the compare
instruction itself. The user is advised to bear in mind that with the ex-
ception of flag queries, binary operations will cause a modification of
the flags. Therefore, a compare result can be used only in a link. Fol-
lowing this, another CPLA instruction must again be programmed.

. The special markers that are influenced only by the CPL instruction
will remain unaffected until the next CPL instruction.

Instruction set7�12

1070 073 875-101 (02.04) GB

7.10 Load instructions

Load instructions (L) are used to write statuses or values from operands into
registers. Signal statuses of inputs / outputs are loaded from the periphery
image.

In the event that the status of inputs or outputs is to be loaded directly from
the peripherals during the program cycle, then this status must be loaded
into the image (LD) before the actual load instruction (L) is issued.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

L B
W
D

I/O/M/SM
T/C/K/SYM
DF/DP
D/DX
R
OPD[R]
P
P[R]
OM, FC,
DM

, R •
•
•
•

•

•

•
•

•

 L
 L
 L
 L
 L
 L
 L
 L
 L

W
B
W
B
B
W
B
D

E0,A
0,B
DF0,C
D0,D
B,C
M[C],D
P0,A
P[A],B
DB10,A

Load content of SRC
into DEST. (Read I/O image)
Read value

Load DB10 module size

LD I
I[R]

,
,
K
[R]

•
•

 LD

 LD

 LD

E0,20

E0,[B]

E[A],[B]

Load 20 bytes* of input sta�
tuses into image, starting with
I0.
Load I�statuses into image,
starting with I0; byte* count in
B.
Load I�statuses into image
(start address in A), (byte*
count in B).

* max. byte count = 256

Example of direct loading:

LD D I12,4 ; Load byte from I12 from the bus master into I-image

L D I12,4 ; Load statuses I12 through I15 into register A

. When using the �indirect parameter� load instruction (L D P[R],R), the
WinSPS is unable to perform a syntax check because it cannot foresee
which operand address will actually be addressed by the parameter.
The controller may enter STOP mode. The user is therefore advised to
ensure the required syntax for this instruction is used.

Instruction set 7�13

1070 073 875-101 (02.04) GB

7.11 Tranfer instructions

Transfer instructions (T) are used to write statuses or values from registers
to operands. Signal statuses from outputs are written into the periphery
image. In the I/O state this image is then transferred to the outputs.

In the event that the statuses of outputs are to be sent directly to the periph-
erals during the program cycle, then the transfer instruction (TD) will be
used.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

T B
W
D

R ,
,
,
,
,
,

A/M/SYM
S/DF
D/DX/DP
R
OPD[R]
P

•
•
•

•

•
•

 T
 T
 T
 T
 T
 T

W
B
W
W
B
W

A,M0
B,DF0
C,D0
A,B
B,M[C]
D,P0

Transfer content of SRC
to DEST. (Write I/O image)
Write value.

TD O
O[R]

,
,
K
[R]

•
•

 TD

 TD

 TD

O0,20

O0,[B]

A[A],[B]

Send 20 bytes* of output sta�
tuses from image to outputs,
starting with O0.
Send O�statuses from image to
outputs, starting with O0. (Byte
count* in B).
Send O�statuses from image to
outputs (start address in A).
(Byte count* in B).

* max. byte count = 256

Example of direct transfer:

L D 16#1234FFFF,A ; Load hex constant into register A

T D A,A12 ; and write to O-image.

TD D A12,4 ;transfer 4 bytes into bus master
 ;for A12–A15.

Instruction set7�14

1070 073 875-101 (02.04) GB

7.12 Convert instructions

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

BID B
W
D

 R • 0 • 0 • BID
BID

W
B

O
B

Binary → BCD (decimal)
result > 9999 sets the
overflow bit

DEB B
W
D

 R • 0 • 0 • DEB
DEB

W
B

C
D

BCD (decimal) → Binary
wrong BCD coding
sets the overflow bit.

CMP B
W
D

 R • • • • • CMP
CMP

W
B

O
B

Converts register contents
to the two’s complement.

N B
W
D

 R • 0 • 0 • N
N

W
B

C
D

Negates register contents,
one’s complement.

Positive and negative numbers are differentiated by the status of the MSB.

OPA Positive Range Negative Range

Double word Bit 31 = 0 0 to +2,147,483,647 Bit 31 = 1 0 to �2,147,483,648

Word Bit 15 = 0 0 to +32,767 Bit 15 = 1 0 to �32,768

Byte Bit 7 = 0 0 to +127 Bit 7 = 1 0 to �128

Example: The representation of positive and negative numbers.

By way of illustration, a 4-bit number (nibble) is used here; the nibble data
format is not supported by the controller.

0 1 1 0 positive number 6
1 0 0 1 negation one�s complement

+ 1
1 0 1 0 two�s complement = negative number 6

1111
�1

0000
0

1110
�2

0001
+1

1101
�3

0010
+2

1100
�4

0011
+3

1011
�5

negative positive 0100
+4

1010
�6

0101
+5

1001
�7

0110
+6

1000
�8

0111
+7

Instruction set 7�15

1070 073 875-101 (02.04) GB

7.13 Increment & Decrement instructions

Increment / decrement the contents of source operand SRC:
D by the number n; (where n=1 to 127)
D when n = 0, and when [C], by the number stored in C, max. 127.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

INC B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

INC
INC
INC

BY
W
W

A,5
A,0
B,[C]

Increment the contents of the
SRC

DEC B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

DEC
DEC
DEC

B
W
W

A,5
A,0
B,[C]

Decrement the contents of the
SRC

7.14 Stack instructions

The available stack size comprises 256 double words. In the event of under-
flow, special marker S28.4 in the system area goes HIGH; overflow sets the
S28.5 to HIGH. The I/O state deletes the entire application stack.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

PUSH D R • PUSH D O Saves the register contents to
application stack, and lowers
the stack address.

POP D R • POP D B Raises the application stack ad�
dress, and reads the saved con�
tents from the stack.

7.15 No operation instructions & CARRY manipulations

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z
NOP NOP No operation

SCY • SCY Unconditionally set CARRY bit
to 1.

RCY • RCY Unconditionally set CARRY bit
to 0.

Instruction set7�16

1070 073 875-101 (02.04) GB

7.16 Shift instructions

Shift the contents of source operand SRC:
D by the number n
D when n = 0, and when [C], by the number stored in C.

When OPA = D then n = 1 to 31
When OPA = W then n = 1 to 15
When OPA = B then n = 1 to 7

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

SLR B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

SLR
SLR

W
B

A,7
B,[C]

SHIFT logical RIGHT

SLL B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

SLL
SLL

W
B

A,7
B,[C]

SHIFT logical LEFT

SAR B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

SAR
SAR

W
B

A,7
B,[C]

SHIFT arithmetical
RIGHT

Logical SHIFT:

MSB LSB CY

SLR B , n 0← 0 D → D o

MSB LSB CY

SLL B , n D ← D 0 ←0 o

↓ → ↑

Arithmetical SHIFT:

All bits being vacated are filled up with the contents of the MSB.

MSB LSB CY

SAR B , n D ←D D → o

In the case of shift operations exceeding one space the overflow bit is set
HIGH after a �1� was shifted through CY.

Instruction set 7�17

1070 073 875-101 (02.04) GB

7.17 Rotate instructions

Shift the contents of source operand SRC:
D by the number n
D when n = 0, and when [C], by the number stored in C.

When OPA = D then n = 1 to 31
When OPA = W then n = 1 to 15
When OPA = B then n = 1 to 7

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

ROR B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

ROR
ROR
ROR

B
W
W

A,7
A,0
B,[C]

Rotate RIGHT

ROL B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

ROL
ROL
ROL

B
W
W

A,7
A,0
B,[C]

Rotate LEFT

RCR B
W
D

 R ,
,
n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

RCR
RCR
RCR

B
W
W

A,7
A,0
B,[C]

Rotate RIGHT through
CARRY

RCL B
W
D

 R ,
,
,

n
0
[C]

• • • •
•
•

•
•
•

•
•
•

•
•
•

RCL
RCL
RCL

B
W
W

A,7
A,0
B,[C]

Rotate LEFT through
CARRY

Rotate right:
MSB LSB CY

ROR B , n 0 D → D o
↑ ↓ → ↑

Rotate left
MSB LSB CY

ROL B , n D ← D 0 o
↓ → ↑ → ↑

Rotate right through CARRY
MSB LSB CY

RCR B , n 0 D → D → o
↑ ≡ ↓

Rotate left through CARRY
MSB LSB CY

RCL B , n D ← D 0 ≡ o
↓ → ↑

In the case of a rotation by more than one space, the following applies:
D The overflow bit goes HIGH when a 1 has been rotated through CY.
D The negative bit goes HIGH when the MSB contains a 1.

MSB: Bit 7 when OPA = B
Bit 15 when OPA = W
Bit 31 when OPA = D

Instruction set7�18

1070 073 875-101 (02.04) GB

7.18 Fixed point arithmetic

7.18.1 Add instructions

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

ADD B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

ADD
ADD
ADD
ADD
ADD
ADD
ADD

W
B
W
B
B
W
B

E0,A
0,B
DP0,C
D0,D
B,C
M[C],D
P0,A

Fixed point addition of signed in�
tegers:
SRC + DEST = DEST

ADC B
W
D

I/O/M/SM
T/C/K/SYM
S/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

ADC
ADC
ADC
ADC
ADC
ADC
ADC

W
B
W
B
B
W
B

E0,A
0,B
DP0,C
D0,D
B,C
M[C],D
P0,A

Fixed point addition of signed in�
tegers allowing for carry (CY):
SRC + DEST + CY = DEST

Byte, word, and double-word addition

MSB:
D Bit 7 when OPA = B
D Bit 15 when OPA = W
D Bit 31 when OPA = D

7/15 0

ADD OPA B , O sg O

+

sg B

=

sg O

ADC OPA C , O sg O

+

sg C

+

CY

=

sg O

Instruction set 7�19

1070 073 875-101 (02.04) GB

Quad-word addition: Value 1 + value 2
Value 1: LOW DW in B, HIGH DW in A
Value 2: LOW DW in D, HIGH DW in C

Low-DW
31 0

ADD D B , O sg A

+
sg B

=
s
g

O

High-DW:
31 0

ADD D B , O sg A

+

sg C

+
CY

=
sg A

Instruction set7�20

1070 073 875-101 (02.04) GB

7.18.2 Substract instructions

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

SUB B
W
D

I/O/M/SM
T/C/K/SYM
S/DP/DF/DP
D/DX
R
OPD[R]
P

, R •
•
•
•

•

•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

SUB
SUB
SUB
SUB
SUB
SUB
SUB

W
B
W
B
B
W
B

E0,A
0,B
DP0,C
D0,D
B,C
M[C],D
P0,A

Fixed point subtraction of
signed integers
DEST − SRC = DEST.

SBB B
W
D

 I/O/M/SM
 T/C/K/SYM
 S/DP/DF/DP
 D/DX
 R
 OPD[R]
 P

, R •
•
•
•

•

•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

SBB
SBB
SBB
SBB
SBB
SBB
SBB

W
B
W
B
B
W
B

E0,A
0,B
DP0,C
D0,D
B,C
M[C],D
P0,A

Fixed point subtraction of
signed integers allowing for
negative carry
(− Carry = Borrow)
DEST − SRC − CY = DEST.

Byte, word, double word subtraction:
MSB:
D Bit 7 when OPA = B
D Bit 15 when OPA = W
D Bit 31 when OPA = D

7/15 0

SUB OPA B , O sg O

�

sg B

=

sg O

SBB OPA C , O sg O

−

sg C

−

CY
=

sg O

Instruction set 7�21

1070 073 875-101 (02.04) GB

Quad-word subtraction: Value 1 � value 2

Value 1: LOW DW in B, HIGH DW in A
Value 2: LOW DW in D, HIGH DW in C

Low-DW
31 0

SUB D D , B sg B

�
sg D

=
sg B

High-DW:
31 0

SBB W C , O sg O

�
sg C

�
CY

=
sg O

Instruction set7�22

1070 073 875-101 (02.04) GB

7.18.3 Multiply instructions

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

MUL B
W
D

 K
 R

, R •
•

0
0

0
0

•
•

•
•

MUL
MUL
MUL

B
W
D

100,A
B,A
B,A

Fixed�point multiplication of
signed integers.

In multiplication, the product always occupies the double width of the output
operands.

Byte, word, multiplication
7/15 0

MUL B/W B , O ; SRC B/W sg B

x

; DEST
B/W

sg O

15/31 =

; DEST
W/D

sg O

Double word multiplication
31 0

MUL D B , O ; SRC�D sg B

x

; DEST�D sg O

=

; DEST�D O

 and

; DEST�D
+1

sg B

Instruction set 7�23

1070 073 875-101 (02.04) GB

7.18.4 Divide instructions

In division, the dividend always occupies the double width of the divisor.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

DIV B
W
D

 K
 R

, R •
•

0
0

•
•

•
•

•
•

DIV
DIV
DIV

B
W
D

100,A
B,A
B,A

Fixed�point division of signed in�
tegers.

Byte, word division
15/31 0

DIV B/W B , O ; DEST
W/D

sg O

7/15 : 0

; SRC B/W sg B

15/31 = 0

; DEST�D A: High�BY=Rest sg LOW BY = Quotient

Double-word division
63 32

DIV D C , O ; DEST�D
+1

sg B

31

; DEST�D O

31 :

; SRC�D sg C

=

; DEST�D sg A: Quotient

 and

; DEST�D
+1

B: Rest

. In the case of a division by 0, the division instruction is not carried out,
and the overflow bit is set HIGH. The overflow bit is also set HIGH in the
case of division overflow.

Instruction set7�24

1070 073 875-101 (02.04) GB

7.19 Floating point arithmetic

Data formats, accuracy
Floating point arithmetic supports the data formats specified in the IEEE 754
and IEE 854 standards.
Two data formats, REAL and LREAL, are defined in accordance with
IEC1131.

Data format Data width Mantissa Exponent Range

REAL:
Short real floating point
number,
single precision

32 bits 24 bits 8 bits 10±38

LREAL:
Long real floating point
number,
double precision

64 bits 53 bits 11 bits 10±308

Data format L always uses the register pairs AB and CD.

When calculating with the REAL data format, inaccuracies in the decimal
range will occur sooner than with the LREAL format. If a high degree of accu-
racy is required, the LREAL format should be used.

. Appropriate conversion routines are available in WinSPS from version
2.4 onwards.

Value range and resolution
The floating point formats do not permit the representation of all numbers in
any desired resolution. For example, if one wants to work with a unit of
measure such as m, which is quite common in mechanical engineering,
the REAL data format permits, for each individual mm, a representation with
a limit value of 16.0 metres. If the LREAL format is chosen instead, the repre-
sentation of numbers up to 17,179,869,184.0 m becomes possible.

Resolution Value limit

Floating point notation Exponential notation REAL LREAL

1,0 E0 16.777.228,0 18.014.398.509.481.984,0

0,1 E�1 1.048.576,0 1.125.899.906.842.624,0

0,01 E�2 131.072,0 140.737.488.355.328,0

0,001 E�3 milli (m) 16.384,0 17.592.186.044.416,0

0,0001 E�4 1.024,0 1.099.511.627.776,0

0,00001 E�5 128,0 137.438.953.472,0

0,000001 E�6 micro (m) 16,0 17.179.869.184,0

0,0000001 E�7 1,0 1.073.741.824,0

0,00000001 E�8 0,125 134.217.728,0

0,000000001 E�9 nano (n) 0,015625 16.777.216,0

0,0000000001 E�10 0,000976563 1.048.576,0

0,00000000001 E�11 131.072,0

0,000000000001 E�12 pico (p) 16.384,0

0,0000000000001 E�13 1.024,0

0,00000000000001 E�14 128,0

0,000000000000001 E�15 femto (f) 16,0

0,0000000000000001 E�16 1,0

0,00000000000000001 E�17 0,125

0,000000000000000001 E�18 atto (a) 0,015625

Instruction set 7�25

1070 073 875-101 (02.04) GB

Operands
Depending on the instruction, the following may be used as floating point op-
erands:
D M, S, DM, DF, D, DXwith both direct and indirect addressing.

The specified operand address must
- be divisible as follows: by 4 for REAL data format and
- by 8 for LREAL data format.

D K, register

. P: A PM parameter may not be used as a floating-point constant. In the
event that this is required, the constant may first be loaded into a
marker word, for example.

Instructions
The floating-point data formats and operands may be used in the following
instruction types:
D LOAD floating point value
D TRANSFER floating point value
D CONVERT
D COMPARE floating point values
D Basic arithmetic functions
D Forming absolute value
D Extracting square root
D Logarithmic functions
D Trigonometric functions

Error displays, range overlaps

FPU errors (division by 0, ...) cause an �Error stop� in the iPCL führen in der
iPCL, range overlaps cause a �Stop�.

7.19.1 Loadfloating point values

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

L R
L

K
R
M, S,
DP, DF, D, DX
P
OPD[R]

, R •

•
•
•

•

•

 L
 L
 L
 L
 L
 L

R
L
L
R
R
L

12,321,A
A,C
M8,C
DF16,B
P0,D
D[A],C

REAL constant → Reg. A
LREAL reg. pair AB → CD
LEAL M8−M15 → Reg. pair CD
REAL DF16−DF23 → Reg. B
REAL P0 → Reg. D
LREAL contents of operand ad�
dressed by reg. A → reg. C

Instruction set7�26

1070 073 875-101 (02.04) GB

7.19.2 TRANSFERfloating point values

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

T R
L

 R ,
,
,
,

M, S,
DP, DF, D, DX
P
 OPD[R]

•
•
•

•

T
T
T
T

R
L
R
L

A,M0
A,DF0
D,P0
D,[A]

REAL reg. A → M0−M3
LREAL reg. pair AB → DF0−DF7
REAL reg. D → P0
LREAL contents of reg. D to
operand addressed by reg. A.

7.19.3 CONVERT number formats (floating point <-> integer)

D 32Converting 32-bit integer values to floating-point REAL / LREAL.
D Converting floating-point REAL / LREAL to 32-bit integer values.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

ITF R
L

 R • ITF

ITF

R

L

O

C

Converts 32�bit integer value from
reg. A to REAL floating point format.
Converts 32�bit integer value from
reg. C to LREAL floating point for�
mat.
The result is written to reg. pair CD.

FTI R
L

 R • FTI

FTI

R

L

O

C

Converts REAL floating point from
reg. A to 32�bit integer value.
Converts LREAL floating point from
reg. pair CD to 32�bit integer value.
The result is written to reg. C.

7.19.4 Convert data formats (REAL <--> LREAL)

In the REAL data format, inaccuracies may occur in the positions after the
decimal point. If better accuracy is required, the LREAL data format must be
used. To handle the required data format conversion, specific conversion in-
structions are provided.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

RTL R • RTL

RTL

O

C

Converts the REAL value of register
A to an LREAL value. Destination
register pair = AB.
Converts the REAL value of register
C to an LREAL value. Destination
register pair = CD.

LTR R R • LTR

LTR

L

L

O

C

Converts the LREAL value of register
pair AB to a REAL value.Destination
register = A.
Converts LREAL value in register
pair CD to a REAL value.Destination
register = C.

Instruction set 7�27

1070 073 875-101 (02.04) GB

7.19.5 Removing decimal positions

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

TRC R
L

 R • TRC R O Writes the value in register A back to
register A but without decimal posi�
tions.

TRC L C Writes the value in register pair CD
back to CD but without the decimal
positions.

7.19.6 Comparefloating point values

Controller instruction RG Addr. Flag Example Comment
OPP OPA SRC Z�OPD A E D R [R] V CY O N Z AG LG

CPLA R

L

M/K

S/DF/
D/DX/DP
R

P

OPD[R]

, R •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

CPLA

CPLA

CPLA

CPLA

CPLA

R

L

L

R

L

M4,A

D200,C

A,C

P62,A

M[C],A

Compare REAL M4 to M7
with register A.
Compare LREAL D200 to D208
with register CD.
Compare LREAL register pair
AB with CD.
Compare REAL P62 with register
A.
Compare LREAL contents of
operand addressed by register C
with register pair AB.

When comparing the REAL and LREAL data formats, the flags require arith-
metical interpretation.

Examples:

Compare
DEST (A) ith SRC (B)

CPLA B,A
DEST (A) with SRC (B)

Jump instruction

Equal A+B JPZ

Unequal A0B JPN

Less than AtB JPM

Less than / equal AvB JPMZ

Greater than AuB JPAG

Greater than / equal AwB SPP

. When using the CPLA instruction, the evaluation of the compare re-
sults must always be programmed immediately following the compare
instruction itself. The user is advised to bear in mind that binary oper-
ations will cause a modification of the state bits. Therefore, a compare
result can be used only in a link. Following this, another CPLA instruc-
tion must again be programmed.

. With various resolutions (decimal positions) the compare operation in
the REAL data format returns correct results only up to specific limit
values.

Instruction set7�28

1070 073 875-101 (02.04) GB

Resolution / Value limit

Resolution Value limit

0,001953125 256,0000

0,03125000 2048,000

0,2500000 32768,00

2,000000 262144,0

32,00000 2097152

Example:

L R 2048.00000,A
CPLA R 2048.00009,A

The difference is not found, and the numbers are recognized as being equal,
Z = 1.

For large numbers at high resolution the LREAL data format must be used.

7.19.7 Calculating with floating point values

For working with floating-point values, the following basic arithmetic func-
tions are available:
D Addition
D Subtraction
D Multiplication
D Division

The instructions handling the four basic arithmetic functions calculate the
contents of the destination register or register pair with the contents of the
source operand. The results are always written to the destination register or
register pair.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

ADD
SUB

R
L

M/K
S/DF/D/DX/DP

R
P
OPD[R]

, R •
•

•
•

•

•
•

•
•
•

•
•

•
•
•

•
•

•
•
•

•
•

•
•
•

ADD
SUB

ADD
SUB
SUB

R
L

L
R
L

M2,A
D200,C

A,C
P62,A
M[C],A

REAL M2 to M5 plus reg. A con�
tents.
LREAL reg. CD minus D200 to
D208
LREAL reg. pair AB + CD
REAL reg. A minus P62
LREAL contents of reg. pair AB
minus operand addressed by
reg. C.

MUL

DIV

R

L

 K

 R

, R •

•

•

•

•

•

•

•

•

•

MUL

DIV

R

L

123.45,A

A,C

REAL 123.45 multiplied by con�
tents of reg. A
LREAL reg. pair AB divided by
reg. pair CD

Instruction set 7�29

1070 073 875-101 (02.04) GB

7.19.8 Forming absolute value

Absolute values are always formed using a register or register pair. The re-
sult is then placed in the same register or register pair as a signed integer.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

ABS R
L

 R • • • • • ABS

ABS

R

L

O

C

Return absolute value of REAL con�
tents of reg A.
Return absolute value of LRLEAL
contents of reg. pair CD.

7.19.9 Extracting square root

Square root extraction always uses a register or register pair. The result is
then written to the same register or register pair.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

SQRT R
L

 R • • • • • SQRT

SQRT

R

L

O

C

Extract square root of REAL con�
tents of register A.
Extract square root of LRLEAL con�
tents of register pair CD.

7.19.10 Exponentiation

For exponentiation XY, the following procedure is used:

D In REAL format, registers A and C are used, with register A holding the
base, and C the exponent. The result is written to register A.

D In LREAL format, register pairs AB and CD are used, with AB holding the
base, and CD the exponent. The result is written to register pair AB.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

POW R
L

 R R • • • • • POW

POW

R

L

A,C

A,C

Exponentiate the REAL contents of
register A with the REAL contents of
register C. The result is written to
register A.
Exponentiate the LREAL contents of
register pair AB with the LREAL
contents of CD. The result is written
to register pair AB.

Instruction set7�30

1070 073 875-101 (02.04) GB

7.19.11 Logarithmic functions

The instructions for logarithmic functions calculate the contents of a register
or register pair. The results are always written to the destination register or
register pair.

Implemented are:
D Natural logarithms
D Base-10 logarithms
D Forming exponential functions from base-10 (common) logarithms

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

LN
LOG
EXP

R
L

 R • • • • • LN

LOG

EXP

R

L

R

O

C

C

Form natural logarithm from REAL
contents of register A.
Form common logarithm from
LREAL contents of register pair CD.
Form exponential value from com�
mon logarithm of REAL contents of
register C.

7.19.12 Trigonometric functions floating point

The instructions for trigonometric functions calculate the contents of a regis-
ter or register pair. The results are always written to the destination register
or register pair.

Implemented are:
D Sine, with entry in radian measure
D Cosine, with entry in radian measure
D Tangent, with entry in radian measure
D Arc sine, main value
D Arc cosine, main value
D Arc tangent, main value

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

SIN
COS
TAN
ASIN
ACOS
ATAN

R
L

 R • • • • • SIN

COS

TAN

ASIN

ACOS

ATAN

R

L

R

R

L

R

O

C

C

O

C

C

Form sine from REAL contents
of register A.
Form cosine from LREAL contents
of register pair CD.
Form tangent from REAL contents
of register C.
Form arc sine from REAL contents
of register A.
Form arc cosine from LREAL con�
tents of register pair CD.
Form arc tangent from REAL con�
tents of register C.

Instruction set 7�31

1070 073 875-101 (02.04) GB

7.20 Parameter assignments

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

Pn B
W
D

I/O/M/T/C/K
S/SM/SYM
D/DX/DF/DP
FC/DM

•
•
•
•

 P0
 P1
 P2
 P3

W
W

I0.0
S0
D0
PM0

Parameter definition for
parameterized module calls.

n: 0−62

7.21 Local symbol names & auxiliary markers for program tracking

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z
DEF I/O/M/T/C/K

S/SM/SYM
D/DX/DF/DP
FC/DM

, SYM DEF
DEF

I0.0,�Symbol
I0,−Name

Definition of symbolic names that
are locally valid only within the
module in which they have been
entered. Essential for the creation
of library modules.

* n

n = 0−63

*1 1 Definition of auxiliary markers for
program tracking.
Processing of these auxiliary
markers is written only to the
marker buffer, and can be inter�
preted only in case of an error. *N
has no influence on the program.

7.22 System variable

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z
DEFW W K DEFW W K0000H Definition of function for system

variable in OM2.

Instruction set7�32

1070 073 875-101 (02.04) GB

7.23 Jump instructions

Jump instructions may be executed unconditionally, and also in dependence
on a binary link and/or a mathematical operation (see also Section 7.2
Flags). With one exception (JP [R]), jump instructions are programmed sym-
bolically, but the entry point may not be located within a program branch be-
cause this would also cause the RES at the jump origin point to be linked.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V C O N Z AG LG
JP SYM

 [R],n*
• • JP

JP
−LABEL1
[A]

Unconditional to −LABEL des�
tination.
Unconditional by jump distance
(byte) in register A.

JPB SYM • • 1 JPB −LABEL2 Conditional, see flags.

JPCI SYM • • 0 JPCI −LABEL3 Conditional, see flags.

JPCY SYM • 1 JPCY −LABEL4 Conditional, see flags.

JPCN SYM • 0 JPCN −LABEL5 Conditional, see flags.

JPO SYM • 1 JPO −LABEL6 Conditional, see flags.

JPON SYM • 0 JPON −LABEL7 Conditional, see flags.

JPM SYM • 1 JPM −LABEL8 Conditional, see flags.

SPP SYM • 0 SPP −LABEL9 Conditional, see flags.

JPZ SYM • 1 JPZ −LABEL10 Conditional, see flags.

JPN SYM • 0 JPN −LABEL11 Conditional, see flags.

JPAG SYM • 1 JPAG −LABEL12 Conditional, see flags.

JPMZ SYM • 0 JPMZ −LABEL13 Conditional, see flags.

JPLG SYM • 1 JPLG −LABEL14 Conditional, see flags.

JPCZ SYM • 0 JPCZ −LABEL15 Conditional, see flags.

The JP [R] instruction causes an unconditional jump whose jump destination
must always be a jump instruction. This instruction variant was created spe-
cifically for the simple implementation of jump distributors. The controller
monitors the instruction mnemonics of the entry point, and enters STOP
mode if this fails to correspond to a jump instruction. In such cases, the error
status of the Programming Unit (PG) provides information about the cause of
the error.

The parameter n can be specified for the purpose of jump sequence monitor-
ing, i.e. n can be less than or equal to the jump count.

The following example demonstrates the application of this jump instruction.

Instruction set 7�33

1070 073 875-101 (02.04) GB

Example:

PLC-program interlude

Fixed program sequence

Jump distance calculation in register A for the following jump sequence A may
only have odd-numbered values (1, 3, 5, ...). The parameter n must not be less
than the following jump count.

JP [A],n ; 1 word instruction
JP Dest1 ; 2 word instruction
JP Dest2 ; 2 word instruction
 :
 :
JP Destn ; 2 word instruction

Dest1: ; Program part 1

PLC program

JP End

Dest2: ; Program part 2

PLC program

JP End

:
:
:
:

Destn: ; Program part n

PLC program

JP End

:
:
End

PLC successor program

:

Instruction set7�34

1070 073 875-101 (02.04) GB

7.24 Module calls

Module call instructions may be executed unconditionally, and also in de-
pendence on a binary link and/or a mathematical operation (see also Section
7.2 Flags).

The iPCL supports a module nesting depth of 63 program modules.

Two data modules may be kept enabled at the same time. For this purpose
the following module calls are available:
CM, BAB, BAI DMn: enables DMn as 1st DM
BX, BXB, BAI DMy: enables DMy as 2nd DM

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

CM
BX

 DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

 CM
 CM
 CM
 CM
 CM
 CM

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Unconditional, direct.
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

CMC
BXB

 DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

• •
•
•
•
•

•

1 CMC
 CMC
 CMC
 CMC
 CMC
 CMC

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

CMCI
BXI

 DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

• •
•
•
•
•

•

0 CMCI
 CMCI
 CMCI
 CMCI
 CMCI
 CMCI

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

CMCY DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

1 CMCY
 CMCY
 CMCY
 CMCY
 CMCY
 CMCY

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

CMCN DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

0 CMCN
 CMCN
 CMCN
 CMCN
 CMCN
 CMCN

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

CMO DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

1 CMO
 CMO
 CMO
 CMO
 CMO
 CMO

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

CMON DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

0 CMON
 CMON
 CMON
 BAPN
 CMON
 CMON

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter; para., list to fol�

low.
Indirect

Instruction set 7�35

1070 073 875-101 (02.04) GB

Module calls continued

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z AG LG
CMM DM

 PM
 PM
 P
 P
 [R]

,
,
n
n

•
•
•
•
•

•

 CMM
 CMM
 CMM
 CMM
 CMM
 CMM

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMP DM
 PM
 PM
 P
 P
 [R]

,
,
n
n

•
•
•
•
•

•

1 CMP
 CMP
 CMP
 CMP
 CMP
 CMP

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMZ DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

0 CMZ
 CMZ
 CMZ
 CMZ
 CMZ
 CMZ

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMN DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

1 CMN
 CMN
 CMN
 CMN
 CMN
 CMN

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMAG DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

0 1 CMAG
 CMAG
 CMAG
 CMAG
 CMAG
 CMAG

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMMZ DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

1 0 CMMZ
 CMMZ
 CMMZ
 CMMZ
 CMMZ
 CMMZ

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMLG DM
 PM
 PM
 P
 P
 Fc[R]

,
,
n
n

•
•
•
•
•

•

0 1 CMLG
 CMLG
 CMLG
 CMLG
 CMLG
 CMLG

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

CMCZ DM
 PM
 PM
 P
 P
 PM[R]

,
,
n
n

•
•
•
•
•

•

0 0 CMCZ
 CMCZ
 CMCZ
 CMCZ
 CMCZ
 CMCZ

DM0
PM0
PM1,2
P0
P0,2
PM[A]

Conditional, see flags.
Direct
Parameterized, list to follow.
As parameter.
As parameter, parameterized.
Indirect

Instruction set7�36

1070 073 875-101 (02.04) GB

7.25 End of module instruction

End of module instructions may be executed unconditionally, and also in de-
pendence on a binary link and/or a mathematical operation (see also Section
7.2 Flags).

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V C O M Z AG LG

EM EM Unconditional

EMC 1 EMC Conditional, see flags.

BEI 0 BEI Conditional, see flags.

EMCY 1 EMCY Conditional, see flags.

EMCN 0 EMCN Conditional, see flags.

EMO 1 EMO Conditional, see flags.

EMON 0 EMON Conditional, see flags.

EEM 1 EEM Conditional, see flags.

EMP 0 EMP Conditional, see flags.

EMZ 1 EMZ Conditional, see flags.

EMN 0 EMN Conditional, see flags.

EMAG 1 EMAG Conditional, see flags.

EMMZ 0 EMMZ Conditional, see flags.

EMLG 1 EMLG Conditional, see flags.

EMCZ 0 EMCZ Conditional, see flags.

Instruction set 7�37

1070 073 875-101 (02.04) GB

7.26 FIFO instructions

The iPCL provides four FIFO buffers, designated FI0 through FI3.

Each FIFO buffer has a size of 1024 bytes.

Reading from and writing to the FIFO buffers is accomplished with the LFI
and TFI instructions. A single instruction reads or writes 1 to 32 bytes.

The number of bytes to be handled by the LFI / TFI instruction is variable, and
is specified in Register C.

. In the event that register contents are written to or read from FIFO
buffers, the number of bytes will be defined via the operand attribute
W/BY. Accordingly, operand attribute BY = one byte; operand attribute
W = two bytes.

When the number of bytes to be handled is variably specified in register C,
each FIFO byte that is read or written causes the value in register C to be
decremented.

In the case of a FIFO buffer overflow or underflow, the value stored in register
C provides information about the number of bytes that could no longer be
read or written.

FIFO overflow or underflow will not automatically cause a ZS STOP. As an
indication of a FIFO overflow, carry bit SM31.3 is set HIGH. A FIFO under-
flow causes zero bit SM31.7 to be set HIGH.

The FIFO buffer is flushed with the RFI (Reset FIFO) instruction.

. In the PNC all FIFOs are residual.
In the osa master P-L/XL all FIFOs are not residual.

All FIFO instructions are RES-independent.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

LFI B
W
D
R
L

 FIn ,
,
,
,
,

M/S/SYM
D/DX
DF/DP
OPD[R]
R

•
•
•

• • Ü:•
Ü:•
Ü:•
Ü:•
Ü:•

U:•
U:•
U:•
U:•
U:•

LFI
LFI
LFI
LFI
LFI

B
B
W
D

FI2,Df30
FI3,D[A]
FI0,A
FI0,A
FI0,A

Read from FIFO buffer.
Number of bytes in C.
1 byte from FIFO into register A
2 bytes from FIFO into register A
4 bytes from FIFO into register A

TFI B
W
D
R
L

 M/S/SYM
 D/DX
 DF
 [R]
 R

, FIn •
•
•

• • Ü:•
Ü:•
Ü:•
Ü:•
Ü:•

U:•
U:•
U:•
U:•
U:•

TFI
TFI
TFI
TFI
TFI

B
B
B
W
D

DF0,FI2
D[A],FI3
A,FI0
A,FI0
A,FI0

Write to FIFO buffer.
Number of bytes in C.
1 byte from register A into FIFO.
2 bytes from register A into FIFO.
4 bytes from register A into FIFO.

RFI FIn RFI FI0 Flush FIFO buffer.

Instruction set7�38

1070 073 875-101 (02.04) GB

7.27 Block commands

Block commands are provided as a convenient means of loading and trans-
ferring and also comparing and searching data blocks within the iPCL. The
maximum size of these data blocks is 512 bytes / 256 words / 128 double
words. The operand attribute indicates whether the block size refers to byte,
word, double word, REAL or LREAL size.

. The following minimum software version is a prerequisite for the use
of the I and O operands in block commands: WinSPS 3.1

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

BLT B/W/D
R/L

 M/S
I/O
D/DX
DP/DF
OPD[B]

,
,
,
,
,

M/S
O
D/DX
DP/DF
OPD[A]

•
•
•
•
• •

BLT
BLT

B
W

M0,D0
DF[B], M[A]

Block transfer from SRC address
−> DEST address. Block size in
register C.

CFxx
CBxx

B/W/D M/S
I/O
D/DX
DP/DF
OPD[B]

,
,
,
,
,

R
O
D/DX
DP/DF
OPD[A]

•
•
•
•
• •

• CFZ
CBN

W
B

MO,D0
M[B],D[C]

Forward/ backward compare op�
eration within block.

SFxx
SBxx

B/W/D K
R

,
,
,
,
,

R
O
D/DX
DP/DF
OPD[A]

•
•
•
•
• •

• SFZ
SBLG

W
B

50,M20
B,M[A]

Forward/ backward search opera�
tion within block.

Block transfer
Block transfers are accomplished by shifting data blocks of defined size,
whereby the data blocks may not overlap. Block transfers use only ascend-
ing addresses (incremental).

Example 1:
CM DM10 ; 1st DM

BX DM9 ; 2nd DM

L D 50,C ; Block size = 50

BLT W D20,DX40 ; Copy 50 words from DM9/D20 to DM10/D40.

Example 2:
L D 50,A ; DEST address offset

L D 50,B ; SRC address offset

L D 50,C ; Block size = 50

BLT D DF[B],M[A] ; Copy 50 double words from DF50 to M50.

Instruction set 7�39

1070 073 875-101 (02.04) GB

Block COMPARE
Compare two data blocks.

If the compare condition is met processing is stopped and the number of un-
compared bytes / words written to register C. When using prefix addressing
also the operand addresses are output to registers A and B.
The zero flag is set to HIGH if the compare conditions were not met through-
out the entire range.

Block compare operations are possible in forward direction on ascending
addresses, and in backward direction on descending addresses.

By interpreting the flags C, M and Z and their respective combinations, 8
compare criteria are available.

OPP Description

CFZ
CFN
CFAG
CFM
CFLG
CFCY
CFCN
CFCZ

Compare forw. operation for the following:
Equal
Unequal
Arithmetical greater
Arithmetical less
Logical greater
Logical less
Logical greater or equal
Logical less or equal

CBZ
CBN
CBAG
CBM
CBLG
CBCY
CBCN
CBCZ

Compare backw. operat. for the following:
Equal
Unequal
Arithmetical greater
Arithmetical less
Logical greater
Logical less
Logical greater or equal
Logical less or equal

DEST block address direct or in register A, SRC block address direct or in
register B, block size always in register C.

Example 1:
CM DM10 ; 1st DM

L D 50,C ; Block size = 50

CFLG W D20,M20 ; Compare forward 50 words for logical greater

; starting at DM10/D20 with marker from M20.

Example 2:
L D 50,A ; DEST address offset

L D 50,B ; SRC address offset

L D 50,C ; Block size = 50

CBZ D DF[B],M[A] ; Compare backward 50 double words for equal

; starting at DF50 with marker from M50.

Result evaluation of compare condition:
D Not met: Z-flag = 1
D Met: Z-flag = 0

D In example 2 register A contains the operand address in the DEST
block.

D In example 2 register B contains the operand address in the SRC
block.

D Register C contains the count of data that was yet not compared.

Instruction set7�40

1070 073 875-101 (02.04) GB

Block search
The function searches for a character within a data block.

If the character is found, the number of bytes / words that were not searched
is stored in register C. With the use of prefix addressing, register A will also
contain the operand address.

If the character was not found (search condition not met) throughout the en-
tire range, the zero flag is set to HIGH.

Through the interpretation of flags C, M, and Z, and their respective com-
binations, 8 search criteria are available.

OPP Description

SFZ
SFN
SFAG
SFM
SFLG
SFCY
SFCN
SFCZ

Search forward for character:
Equal
Unequal
Arithmetical greater
Arithmetical less
Logical greater
Logical less
Logical greater or equal
Logical less or equal

SBZ
SBN
SBAG
SBM
SBLG
SBCY
SBCN
SBCZ

Search backward for character:
Equal
Unequal
Arithmetical greater
Arithmetical less
Logical greater
Logical less
Logical greater or equal
Logical less or equal

Block start address direct or in register A, search value as constant or in reg-
ister B, block size always in register C.

Example 1:
L D 50,C ; Block size = 50

SFLG B 35,M20 ; Search forward 50 bytes starting at M20

; for the value 35.

Example 2:
CM DM10

L D 10,C ; Block size = 10

L D 50,B ; Search value

L D 20,A ; DEST address offset

SRZ D B,M[A] ; Search backward 10 bytes starting at M20 for

the value 50.

Result evaluation of search operation:
D Not met: Z-flag = 1
D Met: Z-flag and = 0

D In example 2 register A contains the operand address of the searched
operand range.

D Register C contains the count of data that was yet not searched.

Instruction set 7�41

1070 073 875-101 (02.04) GB

7.28 Interrupt instructions for time-controlled processing

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

TIM R , TI • TIM A,TI Transfers interrupt mask. Writes interrupt mask for
enabling / disabling interrupts.
The mask was first loaded into a register.

LIM TI , R • LIM TI,B Load interrupt mask,
defined interrupt mask.

EAI TI • EAI TI Enable interrupt group.

DAI TII • DAI TI Disable interrupt group.

LAI TII , R • LAI TI Load interrupt register
(read statuses).

RI R , TI • RI A,TI Reset interrupts based on a mask that was pre�
viously loaded.

7.29 Program stop and program end

Controller instruction RG Addr. type Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

HLT HLT Halt command
Controller enters STOP mode, program address is
entered into error stack and outputs are cleared
(deleted).

PE PE Program end.
I/O state is initialized and the program cycle starts
again at the beginning.
At least one EP instruction must be present.

Instruction set7�42

1070 073 875-101 (02.04) GB

7.30 Backing up and loading residual areas

Residual areas are dealt with using the following functions:
D Backing up residual iPCL data occurs by:

D the program-controlled writing to the static RAM of the osa P-L/XL or
D the automatic backup on shutdown to the hard disk of the base device

via an area in dynamic RAM in the PNC.

D Loading residual data into the iPCL
D from the static RAM of the osa P-L/XL or
D from the hard disk (previously backed up there during the automatic

shutdown (PNC))

The residual areas to be backed up or loaded correspond only to those data
modules
D that have been identified by a residual identifier in the symbol file.
D Operands as per residual limits set in OM2.
See �Selection of residual data for cyclical backup� for iPCL page 3�12.

In the case of markers and the data field, specific areas of the defined resid-
ual area (Offset, Number) can be specified for the backup / loading pro-
cedures.

Controller instruction RG Addr. Flag Example Comment

OPP OPA SRC Z�OPD A E D R [R] V CY O N Z

RS DMn

M,T,Z,
DF,DP
M,DF OFF, Anz

RS

RS
RS
RS

DM1

M
DF
M10,50

Back up DM1 to static RAM
or hard disk.
Back up residual area, as defined in OM2.

Residual from M10 up, backup of 50 bytes.

RL DMn

M,T,Z,
DF,DP
M,DF OFF, Anz

RL

RL
RL
RL

DM1

M
DF
M10,50

Load DM1 from static RAM or from hard
disk.
Load residual area as defined in OM2.

Residual from M10 up, loads 50 bytes.

Processing Times 8�1

1070 073 875-101 (02.04) GB

8 Processing Times

iPCL processing time
The iPCL processing time is the actual duration of program processing in-
cluding the transfer of the I/O image to the bus master. Interruptions due to
the interpolator and record change are included too.

iPCL cycle time
Die iPCL cycle time is defined as the time that elapses from the start of a pro-
gram until the start of the next one.

System clock
OM1 I/O image
PE

Rest of system OM1

iPCLprocessing
time

iPCL cycle time

System clock

Ratio of iPCL system clock to rest of system (Windows)

The PCL cycle time is started in a fixed time matrix that can be set in MA-
CODA parameter 2060 00202.

In the MACODA parameter 2060 00211 the maximum proportion of proces-
sing time for the iPCL can be set. Up to how many percent of the total avail-
able computing time iPCL can take is set with this parameter. (Default value:
30%). If the PCL program exceeds this value, a warning message is gener-
ated indicating that the PCL program has left too little processing time for the
rest of the system. Then either the time matrix of PCL starts must be in-
creased or, if possible, the processing time of the PCL program must be de-
creased. iPCL continues to run during this.

Processing Times8�2

1070 073 875-101 (02.04) GB

Notes:

Sample Programs 9�1

1070 073 875-101 (02.04) GB

9 Sample Programs

9.1 Indirect addressing

 ; DM checking whether
 ; a) DM1–DM16 are present and
 ; b) generating ”existence bits” in result DM0/D0
 ; c) Writing DM sizes into result DM starting with D2

L D 1,A ; Starting with DM1
L D 0,B ; DM existence bits in result DM in D0
L D 2,C ; DM sizes in result DM starting with D2
L D 0,D ; DM no. of result DM

CM DM[D] ; Result DM indirect module call

not_ready:
 ; Check DMs and write results

U DM[A] ; Check DM, indirect module existence check
= D[B] ; If applicable, set existence bit HIGH (ind. bit
addressing)
PUSH D A ; Save DM no.
L D DM[A] ; Load DM size (indirect module size check)
T W A,D[C] ; Write to size word (indirect double word addressing)
POP D A ; Write back DM no.

 ; Increment address
INC D A,1 ; Next DM
INC D B,1 ; Next DM existence bit
INC D C,2 ; Next DM size word

 ; All 16 DMs specified processed?
CPLA D 16,A
JPCZ not_ready ; jump on less than or equal
EM

Sample Programs9�2

1070 073 875-101 (02.04) GB

9.2 Compare instruction examples

; Simuated compare value
;––––––––––––––––––––––––––––

L W M0,A ; Load markers M0–M1
INC W A,1 ; Increment register
T W A,M0 ; Write value into markers M0–M1

; 1. Compare for ”equal”
;–––––––––––––––––––––––––––––

L W M0,A ; Current M0–M1 status
CPLA W 10000,A ; Value 10,000 reached?

; Interpretation via links
U Z ; Value 10,000 reached!
CU Z0 ; Increment counter Z0 by 1

; Interpretation via jump instruction
JPN nicht_0
L W 0,A ; Upon attaining the value 10,000
T W A,M0 ; ... delete M0–M1
not_0:

; 2. Range monitoring
;––––––––––––––––––––––––

; Check value range 4000–6000
CPLA W 4000,A
JPCY Bereich_niO ; Value must not be less than 4000
CPLA W 6000,A
JPCN Bereich_niO ; ... and not greater than 6000

; Increment marker M2 in value window
4000–6000
L D M4,B ; Load markers M4–M7
INC D B,100 ; Increment register
T D B,M4 ; Write value to markers M4–M7

Area_nok:

; delete markers M0–M1 and counter C0 with
; trigger pulse

U –RI_Anl
JPCI no_RI
L D 0,A ; Write value 0
T W A,M0 ; ... to markers M0–M1
SC A,Z0 ; ... and T0
T D A,M4 ; ... on markers M4–M7
no_RI:
EM

Sample Programs 9�3

1070 073 875-101 (02.04) GB

9.3 FIFO instruction examples

DEF SM31.1,–log1
DEF SM31.6,–carry
DEF SM31.7,–zero
DEF M0.0,–trouble
DEF M2.0,–nofifo
DEF M6,–rest
DEF M8.0,–RFI

; Tranferring data into a FIFO buffer:

BX –db5 ; Open data module

A –nofifo ; FIFO instruction locked?
JPB end ; Then no transfer to FIFO

L W K30D,C ; 30 bytes from the second active
; DM

TFI B DX10,FI3 ; starting with D10 to be transferred to
FIFO FI3

A –log1 ; Lock FIFO instruction to prevent
; repeat execution

S –nofifo

A –carry ; FIFO overflow?
O –zero ; FIFO underflow?
S –trouble
JPCI nosave
T W C,–rest ; In case of an overflow / underflow the
count

; of the remaining data that could not be
nosave: ; transferred is written to

; register C.

L W C,C ; Monitor help
end:

; Delete FIFO:
A –RFI ; Delete locked?
JPCI noreset

RFI FI3 ; Delete FIFO FI3

A B –log1
R B –RFI ; Lock delete sequence to prevent

; repeat execution.
noreset:

Sample Programs9�4

1070 073 875-101 (02.04) GB

Notes:

Appendix A�1

1070 073 875-101 (02.04) GB

A Appendix

A.1 Abbreviations

Abbreviation Description

BOF Bosch Standard User Interface

DM Data module

DRAM Dynamic Random Access Memory

EM End of module

EP End of program

ESD Electro-Static Discharge
Abbreviation for all terms relating to elec-
tro-static discharge, e.g. ESD protection,
ESD hazards, etc.

FBD Function Block Diagram

IL Instrction List, programming language

LD Ladder Diagram, programming language

OM Organisation module

PM Program modules

RAM Random Access Memory

SFC Sequential Function Chart

SRAM Static Random Access Memory

ST Structured Text, programming language

TCP/IP Transmission Control Protocol / Internet
Protocol

UPS Uninterruptible power supply

AppendixA�2

1070 073 875-101 (02.04) GB

A.2 Index

A
Absolute value, forming, 7�29
Active ID, 6�7
ADD instructions, 7�18
Addressing

Register � Register, 6�14
Register indirect, 6�15

Addressing Conventions, 6�1
Addressing limits, 6�19
Addressing modes, 6�14
application program, Program structure, 5�7
Application stack, 5�20
APS modules, 5�4
Auxiliary markers for program tracking., 7�31

B
Bit, Data format, 6�7
Bit and module addresses, 6�13
Bit instructions, 7�3
Block commands, 7�38
BMF, 6�6
Buffer failure, 3�16
Bus master error, 6�6
Byte, Data format, 6�7
Byte addresses, 6�13

C
CARRY manipulations, 7�15
Cold start flag, 3�6
COMPARE instruction, 7�10

Example, 9�2
Constants, Representation, 6�12
Controller instruction, Construction, 7�1
CONVERT data formats, 7�26
CONVERT instructions, 7�14
CONVERT number formats, 7�26
Counter instructions, 7�8

D
Data backup, 3�9
Data backup error, 3�16
Data exchange machine, 4�1
Data formats, 6�7
Data modules, 5�3
Decimal positions, removing, 7�27
Digital links, 7�9
DIVIDE instructions, 7�23
Documentation, 1�7
Double word, Data format, 6�9

E
EMC Directive, 1�1
EMERGENCY�STOP devices, 1�5
End of module instruction, 7�36
ESD

Electrostatic discharge, 1�6
grounding, 1�6
workplace, 1�6

ESD�sensitive components, 1�6
Exponentiation, 7�29

F
FBD, 5�1
FEPROM, osa master P�L/XL (SNCI4), 2�5
FIFO instructions, 7�37

Example, 9�3
Fixation, 5�17

Inputs, outputs and markers, 5�6
Residual, 5�17

Fixed point arithmetic, 7�18
Flags, 7�1
Floating point arithmetic , 7�24
Floating point values

calculating with, 7�28
Compare, 7�27
Load, 7�25
Transfer, 7�26

Floppy disk drive, 1�7
Function Block Diagram, 5�1
Functional security, UPS (osa master P�L/XL), 3�11
Functionality, iPCL, 2�1

G
Grounding bracelet, 1�6

H
Hard disk drive, 1�7
Hardware platforms, 2�2

I
I/O state, 5�6
IL, 5�1
INCREMENT & DECREMENT instructions, 7�15
Indirect addressing, 6�16

Examples, 9�1
Indirect bit addresses, 6�17
Indirect byte addresses, 6�17
Indirect module addresses, 6�17
Initial start, Exceptions, 3�3
Initialization, 3�3
Initialization values, 3�3
Initializing special markers, 3�3
Instruction list, IL, 5�1
Instruction set, 7�1
Interrupt instructions, for time�controlled processing, 7�41
iPCL extensions, 2�3
iPCL in PNC, 2�2
iPCL in the osa master P�L/XL (Typ3 osa), 2�2

J
Jump instructions, 6�12, 7�32

K
KSD, 6�6

Appendix A�3

1070 073 875-101 (02.04) GB

L
Ladder Diagram, 5�1
LD, 5�1
LOAD instructions, 7�12
Local symbol names, 7�31
Logarithmic functions, 7�30
Low�Voltage Directive, 1�1

M
MACODA, Registering the iPCL, 3�1
Memory types, osa master P�L/XL (SNCI4), 2�5
Module calls, 7�34
Module existence, 5�15
Module header, 5�16
Module list, 6�1
Module reference list, 5�14
Module size, 5�15
Module start address, 5�16
Module Types, 5�2
Modules, Parameterized, 5�18
Modules sensitive to electrostatic discharge. See ESD�

sensitive components
MULTIPLY instructions, 7�22

N
New start

non�residual, 3�8
residual, 3�8

No operations, 7�15
Non�residual operation, 3�15

O
OM2, Initialisation table, 5�8
OM2iPCL, Printout, 5�9
OM5, New start OM, 3�5
OM7, Restart OM, 3�5
OM9, Error module, 5�17
OPC server functions, 2�3
Operand & module identifiers, 6�1
Operands (absolute addressable), 6�14

Direct addressing, 6�14
Organization modules (OM), 5�2

P
Parameter assignments, 7�31
Parameter transfer, 6�18
Peripheral Operation, 4�1
Periphery status, 6�6
Processing Times, 8�1
PROFIBUS�DP, 4�2

Configuration, 4�2
Data consistency, 4�2
Data exchange, 4�2
Interfacing with the hardware platform, 3�1
Peripheral errors, 4�2
Properties, 4�2

Program module calls, 6�12
Program modules, 5�3
Program processing

cyclical, 5�5
time�controlled, 5�5, 5�19

Program stop and program end, 7�41
Program Structure, 5�2
Programming, 5�1

Q
Qualified personnel, 1�2

R
Register structure, 6�11
Register�to�register addressing, 6�14
Release, 1�8
Residual areas

backing up and loading, 7�42
OB2, 3�12

Residual characteristics, Hardware platforms, 3�14
Residual data, Selection for cyclical backup, 3�12
Residual operation, 3�15
Restart

non�residual, 3�8
residual, 3�8

ROTATE instructions, 7�17

S
Safety instructions, 1�4
Safety markings, 1�3
Sample Programs, 9�1
SD, 6�7
SDRAM

osa master P�L/XL (SNCI4), 2�5
PNC, 2�4

Sequential Function Chart, 5�1
SFC, 5�1
SHIFT instructions, 7�16
Slave diagnostics (classified), KSD, 6�6
Spare parts, 1�6
Special marker area, Assignment, 6�2
Square root, extracting, 7�29
SRAM , osa master P�L/XL (SNCI4), 2�5
ST, 5�1
STACK instructions, 7�15
Standard operation, 1�1
Startup, 3�4

overview, 3�2
with processing STOP, 3�8
with startup STOP, 3�7
without error, 3�7

Startup characteristics, 3�5
Startup conditions, 3�4
Structured Text, 5�1
SUBTRACT instructions, 7�20
SWAP instructions, 7�9
Switch setting S1, 3�4
System area, Assignment, 6�4
System clock management, 3�1
System configuration, 3�1
System diagnostics, SD, 6�7
System Overview, 2�1
System variable, 7�31

T
Test activities, 1�5

AppendixA�4

1070 073 875-101 (02.04) GB

Time format, 7�6
Time Monitoring, 5�6
Timer diagrams, 7�7
Timer instructions, 7�5
Timer programming, 7�4
Times, Updates, 5�7
Trademarks, 1�8
TRANSFER instructions, 7�13
Trigonometric functions floating point, 7�30

W
Word, Data format, 6�8

A�1

1070 073 875-101 (02.04) GB

Australia
Robert Bosch (Australia) Pty. Ltd.
Head Office
Cnr. Centre - McNaughton Roads
P.O. Box 66
AUS-3168 Clayton, Victoria
Fax (03) 95 41 77 03

Great Britain
Robert Bosch Limited
Automation Technology Division
Meridian South
Meridian Business Park
GB-Braunstone Leicester LE3 2WY
Fax (01 16) 289 2878

Canada
Robert Bosch Corporation
Automation Technology Division
6811 Century Avenue
CAN-Mississauga, Ontario L5N 1R1
Fax (905) 5 42-42 81

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Fax +49 (0) 60 62 78-4 28

1070 073 875-101 (02.04) GB · HB NC · BRC/ESM11 · Printed in Germany

USA
Robert Bosch Corporation
Automation Technology Division
Fluid Power Products
7505 Durand Avenue
USA-Racine, Wisconsin 53406
Fax (414) 5 54-81 03

Robert Bosch Corporation
Automation Technology Division
Factory Automation Products
816 East Third Street
USA-Buchanan, MI 49107
Fax (616) 6 95-53 63

Robert Bosch Corporation
Automation Technology Division
Industrial Electronic Products
40 Darling Drive
USA-Avon, CT 0 60 01-42 17
Fax (860) 4 09-70 80

Bosch Automation Technology

We reserve the right to make technical alterations

Your concessionary

	1 Safety Instructions
	1.1 Intended use
	1.2 Qualified personnel
	1.3 Safety markings on products
	1.4 Safety instructions in this manual
	1.5 Safety instructions for the described product
	1.6 Documentation, software release and trademarks

	2 System Overview
	2.1 Functionality
	2.2 Hardware platforms
	2.3 iPCL extensions
	2.4 Data backup

	3 Configuration
	3.1 Connecting to the system
	3.2 Startup of the iPCL
	3.2.1 Initialization of the iPCL
	3.2.2 Startup diagram
	3.2.3 Startup conditions

	3.3 Data backup and residual characteristics of the iPCL
	3.3.1 Data backup depending on hardware platform
	3.3.2 Defining residual areas in the OM2
	3.3.3 Residual characteristics depending on hardware platform
	3.3.4 Residual operation
	3.3.5 Non-residual operation
	3.3.6 Buffer failure, data backup fault

	4 Peripheral Operation
	4.1 Data exchange machine <--> PLC
	4.2 PROFIBUS-DP

	5 Programming Basics
	5.1 Programming
	5.2 Program Structure
	5.3 Module Types
	5.3.1 Organization modules (OM)
	5.3.2 Program modules
	5.3.3 Data modules
	5.3.4 APS modules

	5.4 Program Processing
	5.5 Time Monitoring
	5.6 I/O state
	5.6.1 Fixing inputs, outputs & markers
	5.6.2 Updating timers
	5.6.3 Cyclical processing
	5.6.4 Application program structure

	5.7 Initialisation table OM2
	5.7.1 Printout of the OM2iPCL

	5.8 Module reference list
	5.9 Module existence
	5.10 Module size
	5.11 Module start address
	5.12 Module header
	5.13 OM9 error module
	5.14 Fixation
	5.15 Parameterized Modules
	5.16 Time-controlled program processing
	5.17 Application stack

	6 iPCL addressing
	6.1 Operand & module identifiers, module list
	6.2 Assignments in the special marker area
	6.3 System area assignment
	6.4 Periphery status
	6.5 Data formats
	6.6 Register structure
	6.7 Representation of constants
	6.8 Program module calls
	6.9 Jump instructions
	6.10 Bit- and module addresses
	6.11 Byte addresses
	6.12 Addressing modes
	6.12.1 Absolute addressable operands
	6.12.2 Direct addressing of all absolute addressable operands
	6.12.3 Register-to-register addressing
	6.12.4 Register indirect addressing
	6.12.5 iPCL indirect addressing

	6.13 Parameter transfer
	6.14 Addressing limits

	7 Instruction set
	7.1 Structure of controller instructions
	7.2 Flags
	7.3 Key to abbreviations
	7.4 Bit instructions
	7.5 Timer programming
	7.5.1 Timer instructions
	7.5.2 Time format
	7.5.3 Timer diagrams

	7.6 Counter instructions
	7.7 Digital links
	7.8 SWAP instructions
	7.9 Compare instruction
	7.10 Load instructions
	7.11 Tranfer instructions
	7.12 Convert instructions
	7.13 Increment & Decrement instructions
	7.14 Stack instructions
	7.15 No operation instructions & CARRY manipulations
	7.16 Shift instructions
	7.17 Rotate instructions
	7.18 Fixed point arithmetic
	7.18.1 Add instructions
	7.18.2 Substract instructions
	7.18.3 Multiply instructions
	7.18.4 Divide instructions

	7.19 Floating point arithmetic
	7.19.1 Loadfloating point values
	7.19.2 TRANSFERfloating point values
	7.19.3 CONVERT number formats (floating point <-> integer)
	7.19.4 Convert data formats (REAL <--> LREAL)
	7.19.5 Removing decimal positions
	7.19.6 Comparefloating point values
	7.19.7 Calculating with floating point values
	7.19.8 Forming absolute value
	7.19.9 Extracting square root
	7.19.10 Exponentiation
	7.19.11 Logarithmic functions
	7.19.12 Trigonometric functions floating point

	7.20 Parameter assignments
	7.21 Local symbol names & auxiliary markers for program tracking
	7.22 System variable
	7.23 Jump instructions
	7.24 Module calls
	7.25 End of module instruction
	7.26 FIFO instructions
	7.27 Block commands
	7.28 Interrupt instructions for time-controlled processing
	7.29 Program stop and program end
	7.30 Backing up and loading residual areas

	8 Processing Times
	9 Sample Programs
	9.1 Indirect addressing
	9.2 Compare instruction examples
	9.3 FIFO instruction examples

	A Appendix
	A.1 Abbreviations
	A.2 Index

